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TO MY PARENTS



La filosofia €’ scritta in questo grandissimo libro che continuamente ci
sta aperto innanzi agli occhi (io dico 'universo), ma non si puo’
intendere se prima non s’'impara a intender la lingua, e conoscer i
caratteri, ne’ quali € scritto. Egli € scritto in lingua matematica, e i
caratteri sono triangoli, cerchi, ed altre figure geometriche, senza i quali
mezzi € impossibile a intenderne umanamente parola; senza questi €
un aggirarsi vanamente per un oscuro labirinto.

G. GALILEL Il Saggiatore, Opere, Ed. Nazionale, vol. VI, p. 300.

Certo, volendo, uno puo’ anche metiersi in testa di trovare un ordine
nelle stelle, nelle galassie, un ordine nelle finestre illuminate dei
grattacieli vuoti dove il personale della pulizia tra le nove € mezzanotte
da’ la cera agli uffici. Giustificare, il gran lavoro €’ questo, giustificate se
non volete che tutto si sfasci.

I. CALVINO, Ti con zero, 2nd edition, 1967, G. Einaudi, Torino.
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Preface

Most of the matter in the universe can, in some form or other, be treated as a
fluid and in several instances (supernova explosions, jets in extragalactic
radio sources, accretion onto neutron stars and black holes, high-energy
particle beams, high-energy nuclear collisions, etc.) undergoes relativistic
motion. This consideration alone should be sufficient to motivate research
in relativistic fluids. In the past most of the results on relativistic fluids have
been obtained in a piecemeal way, in relation to a particular problem under
consideration and using ad hoc techniques. Although this approach is
perfectly legitimate in the process of research in the various areas of
applications (astrophysics, plasma physics, nuclear physics), in the long run
it is unsatisfactory because it tends to obscure the underlying unity of the
subject and of the relevant techniques. In fact, a problem tailored approach
(instead of a systematic and general one) necessarily precludes utilizing, in a
particular area, results obtained in another area, and therefore hinders the
cross fertilization of various techniques, a method which has been fruitful in
several areas of science.

In 1967 the French mathematician André Lichnerowicz published a
masterful monograph on relativistic fluid dynamics and magneto-fluid
dynamics, which covered mainly existence and uniqueness results. Since
then there has been no other attempt at a systematic development of the
subject, although there have been several important developments in the
field (particularly in shock wave theory). The aim of this book is to provide a
unified and systematic treatment of the main results and techniques of
relativistic fluid dynamics with an emphasis on nonlinear wave propag-
ation in relativistic fluids and magneto-fluids. The book should be of
interest to astrophysicists working in relativistic astrophysics, to plasma
physicists working on relativistic plasmas, and to nuclear physicists
interested in high-energy heavy ion collisions. The book should also be of
some interest to the applied mathematician because it utilizes explicitly
(whenever is convenient) covariant methods that render the treatment and
the proofs more transparent and concise (this is, for instance, the case of the
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entropy principle, the introduction of the main field, and the symmetriz-
ation of the field equations).

This book draws heavily on the research of many scientists and I have tried
to give credit to their work in the text and in the references. Some chapters
of the book (in particular those treating the propagation and stability of
relativistic shocks and relativistic simple waves in magneto-fluids) are
almost entirely drawn from work by myself and my co-workers, in
particular, A. Majorana, S. Motta, O. Muscato, and G. Russo. I am
indebted to them for their constant advice and help in preparing the
manuscript. I have discussed the contents and the style of the book with my
former supervisor D. Sciama and J. Miller, and I gratefully acknowledge
their constant encouragement and help.

Finally, I have to thank my wife, Marisa, and my children, Stefano and
Giorgia, for accepting their share of the burden caused by the writing of this
book.
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Introduction

Relativistic fluid models are of considerable interest in several areas of
astrophysics, plasma physics, and nuclear physics. Here we will mention
briefly some of these areas and emphasize the problems which form the
physical motivations for the theories expounded in this book.

Theories of gravitational collapse and models of supernova explosions
(Van Riper, 1979; Chevalier, 1981; Shapiro and Teukolsky, 1983) are based
on a relativistic fluid model for the star. In most models a key feature is
the occurrence of an outward propagating relativistic shock. The precise
conditions under which the shock forms at some point with exactly the
necessary strength to expel the bulk of the star but still leave behind a
remnant remain to be studied in detail and are the subject of current
investigation. The effects of deviations from spherical symmetry due to
an initial angular momentum and magnetic field must also be assessed.
This requires the use of relativistic magneto-fluid dynamical models
(Yodzsis, 1971; Maeda and Oochara 1982; Sloan and Smarr, 1986). The
problem of the shock stability when traversing regions where the equation
of state softens could be of interest for supernova models.

In the theories of galaxy formation, relativistic fluid models have been
used in order to describe the evolution of perturbations of the baryon
and radiation components of the cosmic medium (Peebles, 1980). Other
components consisting of collisionless particles (such as massive neutrinos
or photinos) are usually treated within a kinetic framework (Peebles, 1980).
Such an approach is satisfactory for linear problems but encounters severe
mathematical difficulties for nonlinear ones. In this case, at least for some
problems, a generalized fluid model based upon an appropriate truncation
of the kinetic moment equations might be adequate.

Theories of the structure and stability of neutron stars assume that the
medium can be treated as a relativistic perfectly conducting magneto-fluid
(Bekenstein and Oron, 1979). Theories of relativistic stars (which would
be models for supermassive stars) are also based on relativistic fluid models
(Zel'dovich and Novikov, 1978).

The problem of accretion onto a neutron star or a black hole is usually
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set in the framework of relativistic fluid models (Shapiro and Teukolsky,
1983; Abramowicz, Calvani, and Nobili, 1980; Lovelace, Mehanian, and
Mobarry, 1986; Mobarry and Lovelace, 1986).

Several theories of jets and superluminal variations in extragalactic
radio sources and quasars are based on relativistic magneto-fluid models
(Begelmann, Blanford, and Rees, 1984). In particular, in some models, the
observed variability is associated with the development of magneto-fluid
dynamical waves or instabilities (Ferrari and Tsinganos, 1986).

In the field of plasma physics there are areas where relativistic fluid
models are of interest.

Magnetohydrodynamic shock waves in the near relativistic regime have
been obtained with the Columbia University Plasma Laboratory Electro-
magnetic High-Energy Shock Tube (Gross, 1971; Taussig, 1973). The
theoretical analysis of these experiments is rather difficult and has been
obtained by numerical simulation in a nonrelativistic framework
(Liberman and Velikovich, 1985). A small increase in the attained speed
would require a proper relativistic magneto-fluid dynamical calculation.

Intense relativistic electron beams (Davidson, 1974, Miller, 1985), which
have very interesting applications such as the free electron laser, have also
been modeled as relativistic fluids near thermal equilibrium (Toepfer, 1971).
In situations far from thermal equilibrium, relativistic fluid models with
generalized state equations have been proposed (Siambis, 1979; Newcomb,
1982) in a noncovariant framework. More satisfactory fully covariant
models have also been introduced (Amendt and Weitzner, 1985; Anile and
Pennisi, 1989).

In the field of nuclear physics, high-energy collisions among heavy nuclei
have been modeled by using relativistic fluid dynamics (Amsden, Harlow,
and Nix, 1977). When a nondissipative description applies and relativistic
effects are not negligible, nuclear matter is described by the equations of
relativistic fluid dynamics and all the details of nuclear interactions are
incorporated in the state equation (Clare and Strottman, 1986). Many
models predict the occurrence of a relativistic shock when two heavy
nuclei collide (Sobel et al, 1975). Also, some models under current
investigation predict that relativistic shocks (or detonation and deflagra-
tion waves) might be related to the phase transition from nuclear matter
to quark-gluon plasma (Barz et al., 1985; Clare and Strottman, 1986;
Cleymans, Gavai, and Suhonen, 1986). The questions related to the
propagation and stability of relativistic shocks are obviously of relevance
in this area.

The aim of this book is to develop and expound some theoretical
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methods and results which are relevant for the study of the relativistic
fluid models used in applications to astrophysics, plasma physics, and
nuclear physics. We will focus on the subject of nonlinear waves, which
is fundamental for the understanding of dynamical theories and has diverse
applications. In particular, we will emphasize the study of weak dis-
continuities, simple waves, and shock waves in relativistic fluid dynamics
(RFD) and magneto-fluid dynamics (RMFD). Also, we will present some
useful asymptotic methods (such as the method of asymptotic waves and
the two-timing method) in a covariant framework and apply them to the
study of high-frequency waves in RFD and RMFD, to Einstein’s equations,
and to the study of the interaction of locally plane electromagnetic waves
with a relativistic plasma. Finally, we treat in detail the question of the
stability of relativistic shocks.

In Chapter 2 we start with an introduction to the equations of relativistic
fluid dynamics ad magneto-fluid dynamics in a given but arbitrary
space-time. Then we perform a detailed analysis of the mathematical
structure of the equations in the framework of the theory of symmetric
hyperbolic systems. In Chapter 3 we give a covariant treatment of the
theory of singular hypersurfaces in space-time, which will be used
extensively in subsequent chapters. In Chapter 4 we discuss in detail the
propagation of weak discontinuities in RFD and RMFD as well as
electromagnetic and gravitational discontinuities. Chapter 5 is entirely
devoted to the study of simple waves in RFD and RMFD. In Chapter 6
we introduce a covariant formulation of the two-timing method and apply
it to the study of geometrical optics in a relativistic plasma. In Chapter
7 we introduce the method of asymptotic waves and apply it to RFD,
RMFD, and Einstein’s equations in vacuo. In Chapter 8 we discuss in
detail the thermodynamic properties of shock waves in RFD and RMFD.
In Chapter 9 we study the damping of a relativistic shock and present a
method for weak shocks. In Chapter 10 we investigate the stability of
plane relativistic shocks in a fluid with an arbitrary state equation and
present some examples arising from astrophysics and nuclear physics.

The preliminary knowledge which is required by the reader is essentially
a working knowledge of relativity theory and tensor calculus (at the level
of Misner, Thorne, and Wheeler, 1973) and some previous acquaintance
with hydrodynamical concepts.
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Mathematical structure

2.0. Introduction

The simplest model for a relativistic medium is that of a relativistic fluid.
When the medium interacts electromagnetically and is electrically highly
conducting the simplest description is in terms of relativistic magneto-fluid
dynamics.

From the mathematical viewpoint relativistic fluid dynamics (RFD) and
magneto-fluid dynamics (RMFD) have mainly been treated in the frame-
work of general relativity, that is, as describing possible sources of the
gravitational field. This means that both the RFD and RMFD equations
have been studied in conjunction with Einstein’s equations.

In this framework Lichnerowicz (1967) has made a thorough and deep
investigation of the initial value problem, and by using the theory of Leray
systems, has obtained a local existence and uniqueness theorem in a
suitable function class.

In many applications (particularly in plasma physics) one can neglect
the gravitational field generated by the medium in comparison with the
background gravitational field, or, in many cases, one can simply assume
special relativity.

Mathematically this amounts to taking into account only the conserva-
tion equations for the matter, neglecting Einstein’s equations. The resulting
theory can be called test relativistic fluid dynamics or magneto-fluid
dynamics. These theories are mathematically much simpler than the full
general relativistic ones, and, consequently, stronger and more detailed
results can be obtained.

In Section 2.1, following ideas originally introduced by Friedrichs (1974)
and developed by Ruggeri and Strumia (1981a), we give a covariant
definition of a quasi-linear hyperbolic system. The concept of systems of
conservation laws is also introduced in this section.

In Section 2.2 we introduce the equations of test nondissipative (perfect)
relativistic fluid dynamics. We give several examples of equations of state,
for example, those describing a barotropic fluid, or a polytropic fluid, or
a nondegenerate relativistic monatomic gas.

In Section 2.3 we study the mathematical structure of the equations of
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test perfect relativistic fluid dynamics. In particular, we prove that under
a certain assumption on the equation of state they form a quasi-linear
hyperbolic system. Finally, we give a covariant definition of the normal
speed of propagation of a hypersurface with respect to a family of observers.
By using this concept one can interpret the above mentioned restriction
on the equation of state as the principle of relativistic causality.

In Section 2.4 we introduce the covariant equations of test relativistic
magneto-fluid dynamics and study their mathematical structure. We
perform a detailed study of the roots of the characteristic equation and
of the associated left and right eigenvectors. We show that unless some
(nonphysical) restrictions are imposed on the field variables, the system
of equations is not hyperbolic. This is due to the fact that the covariant
equations comprise the constraint part of Maxwell’s equation.

A reduction to a (symmetric) hyperbolic system is possible by loosing
manifest covariance and this is achieved in Section 2.7. Most of the results
expounded in Sections 2.4 and 2.7 have been obtained jointly by the author
and S. Pennisi (1987).

In Section 2.5 we present a concise account of a method, originally
introduced by Friedrichs and Lax (1971) and Friedrichs (1974, 1978) and
suitably modified and extended by Boillat (1974, 1976) and by Ruggeri
and Strumia (1981a), aimed at obtaining a symmetric hyperbolic system
from a given system of conservation laws when supplementary conser-
vation laws (with suitable properties) exist.

Then one can apply to these systems the modern theory of quasi-linear
hyperbolic symmetric equations in order to obtain (local in time) existence
and uniqueness theorems for the initial value problem.

In Section 2.6 the method previously expounded is applied to test
relativistic fluid dynamics. The results presented in this section have been
obtained by Ruggeri and Strumia (1981a).

Finally, in Section 2.7 the above mentioned method is applied to test
relativistic magneto-fluid dynamics.

2.1. Quasi-linear hyperbolic systems in conservation form

In order to introduce the concept of quasi-linear hyperbolic systems it is
convenient to start with an example from Newtonian physics.
The equations for a perfect fluid are (Landau and Lifshitz, 1959a), in
an inertial frame and Cartesian coordinates,
dp op o'

ATV PO
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o o 1op _

J

ot Vo p ox

§+vias =0
ot ax'

0

where p, p, S, v' are, respectively, the mass density, pressure, specific
entropy, and velocity. The pressure p is assumed to be given by a state
equation of the form

p = p(p,S).
By introducing the field column vector
UT =(p,,9)
these equations can be rewritten in matrix form

ou .U
5 FAU)Z=0,

where the matrixes A* are

' p 0 0 07
’;—" 0 0 %
Al =
0 0 o 0 Of
0 0 0 o 0
[0 0 0 0 ot
"2 0 p 0 0]
0 2 0 0 0
a2=|P o 2 oo B ,
p p
0 0 0 »» 0
L0 0 0 0 o2
W 0 0 p 0
0 o 0 0 0
po|0 00 0 0
Po g 0 p» B
p p
[0 0 0 0

In this way the equations of Newtonian fluid mechanics have been written
as a quasi-linear system.
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A quasi-linear system will be said to be hyperbolic in the time direction
(Courant and Hilbert, 1953) if the eigenvalue problem

(—AI + A(U)n,)d =0,

where n is an arbitrary unit vector and I is the identity matrix, has N real
eigenvalues A (where N is the number of the field column vector
components), and the corresponding set of eigenvectors d span the
N-dimensional Euclidean space RY.

It is easy to check that, according to this definition, the equations of
Newtonian fluid mechanics form a hyperbolic system (Jeffrey, 1976). The
physical significance of the eigenvalues 4 is such that they correspond to
the propagation speeds of disturbances.

The definition of a quasi-linear hyperbolic system can be easily formu-
lated in a covariant framework as follows.

Let .# be a space-time, that is, a differentiable manifold of dimension
4, endowed with a Lorentz metric g of signature + 2. Units will be such
that the speed of light ¢ = 1. We denote by V the canonical Riemannian
connection associated with g (De Felice and Clarke, 1989).

The field U representing physical quantities will consist of a set of
(piecewise) differentiable tensor fields. In local coordinates (x*) (lower-
case Greek indices run from 0 to 3 and Latin ones from 1 to 3, except
where stated otherwise), the field U will have components U4 (x%),
A=1,2,...,N, and its covariant derivative VU by definition will be a set
of tensor fields with components V,U*.

In .# we consider a quasi-linear system of N first order partial differential
equations for the unknown field U, which in local coordinates (x*) is written

AFUIVUP = fAU), 2.1

where A3Y(U¢) and f4(U°), which can be interpreted as components of
N x N-matrixes and N-vectors in R¥, are differentiable functions of (U°)
in some open domain D = R¥.

Following Friedrichs (1954, 1974), one can introduce the following
definitions.

DEFINITION 2.1.  Let &% be a differentiable timelike unit vector field in W', %
an open connected subset of M. The system (2.1) is called hyperbolic in the
time direction defined by &* if the following two conditons hold in W":

(i) det(A*E,) # 0, where A is the matrix whose components in a local chart
are A%,
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(ii) For any spacelike vector field {, on W, the eigenvalue problem
A%l — ué)d =0

has only real eigenvalues p and N linearly independent eigenvectors d.

Note that it is not restrictive to take {, such that {,é*=0 and {,{*= 1.
In fact, any spacelike {, can be decomposed as

Ca = b(va - aéa)’

where v?v, =1, v*(, =0, a and b are real numbers, b > 0.

When the roots u are all distinct the system will be said to be strictly
hyperbolic (Friedrichs, 1954, 1974).

The vectors {,— u&, are called characteristic and &, is called
subcharacteristic.

Most of the systems of mathematical physics derive from conservation
laws. For instance, the equations of Newtonian fluid mechanics derive,
with some additional assumptions, from the laws of conservation of mass,
energy, and momentum (Whitham, 1974; Jeffrey, 1976). This provides the
motivation for the following definition.

DEFINITION 2.2. The system (2.1) is said to be in conservation form if there
exist F*(U) such that, in any local chart,

aFaA
ou®

F*4(U°) being differentiable functions of UeD < R¥.

AR U = 22

In the following we shall consider hyperbolic systems in conservation
form. Also, as will be seen in what follows, in many important situations
in mathematical physics, from the field equations (2.2), one can derive a
supplementary conservation law

Vh{(U*) = g(U°) (2.3)
with k% g differentiable functions of UeD < R¥. This is the case of the
equations of Newtonian fluid dynamics, from which we can obtain the
energy conservation law

d 2 0 1,2 —
a—tp(£+v /2)+ﬁ[pv(v 24+¢e+p)1=0,

where ¢ is the specific internal energy. Alternatively, one might take this
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latter equation as part of the system describing perfect fluids [using ¢
instead of S in the field variables and expressing p = p(p, ¢)] and interpret
the entropy equation as a supplementary conservation law.

The existence of a supplementary conservation law with suitable pro-
perties will be a key ingredient for the theories of discontinuous solutions
of the system (2.2). This question is deeply related to the concept of entropy
for continuous media and the theory of shock waves, as will be seen in
later chapters.

We remark that when .# is Minkowski space-time, then we can take
W =4 and (x° x',x2 x%) as inertial coordinates. For the choice £*=
(1,0,0,0) the previous definitions reduce to the usual ones in Cartesian
coordinates which we gave above, with — g as eigenvalues.

It is trivial to give a coordinate-free and global version of the above
definitions. What is needed is a global definition of the vector field £* and
a coordinate-free definition of the covariant derivative VU (Anile, 1982).

A coordinate-free formulation could be useful for some important
problems encountered in relativistic astrophysics. For instance, for the
problem of the stability of black holes one generally needs several charts
in order to cover the whole space-time (Hawking and Ellis, 1973). Therefore,
in this case, a coordinate-free definition of a hyperbolic system is essential
in order to interpret the mathematical nature of the perturbation equations.

In the next section we will introduce the equations of relativistic fluid
dynamics and in Section 2.3 we will write them in the form of a quasi-linear
system and prove that under reasonable conditions they form a hyperbolic
system.

2.2 The equations of relativistic nondissipative fluid dynamics

The equations of relativistic fluid dynamics, known since the early stages
of relativity theory, have usually been derived by analogy with Newtonian
fluid dynamics with an appropriate identification for the relativistic
quantities representing energy and momentum densities and fluxes (Synge,
1956, 1960; Landau and Lifshitz, 1959: Misner et al., 1973; Taub, 1978).
A better justification, starting from first principles, can be obtained in the
framework of relativistic continuum mechanics (Cattaneo, 1970; Ferrarese,
1982). A deep discussion of the derivation of the relativistic fluid dynamical
equations when dissipation is also taken into account can be found in
Dixon (1978).

Alternative approaches based on relativistic kinetic theory can also
justify the equations of relativistic fluid dynamics (De Groot, Van der
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Leeuw, and Van Weert, 1980). Admittedly, these approaches are more
limited in scope, because kinetic theory is applicable only to a rarefied
gas (whereas continuum thermodynamics can deal with a broad class of
materials). However, this limitation is more than compensated by the fact
that, in a kinetic theory framework, it is possible to calculate the equation
of state and the transport coefficients from the particle collision model.

Because several derivations of the relativistic fluid dynamical equations
already exist in the literature, we shall not attempt in this section to
present yet another derivation, but we shall simply sketch the basic argu-
ment in the case of a perfect fluid.

We assume that the fluid is characterized by a four-velocity u* (re-
presenting the average of the microscopic velocities) and an energy-
momentum tensor T#* [ whose existence can be inferred from the relativistic
counterpart of Cauchy’s theorem of continuum mechanics (Dixon, 1878)].

Let p be the rest mass density measured in the local rest frame (or
baryon number density, according to the circumstances). Then one of the
equations of relativistic fluid dynamics represents the local law of mass
conservation and reads

V,(pu*) = 0. (2.4)

The other equations represent the local laws of conservation of energy
and momentum and read

V,T% =0 2.5)

A perfect fluid is defined by the property that, in the local rest frame,
it allows no energy fluxes and no anisotropic stresses. Therefore, at a given
space-time point, in the local rest frame [in which the components of the

four-velocity are #* =(1,0,0,0)], the energy-momentum tensor compo-
nents are

e 0 00
- 0 p 00O
uv __
T 00 p O
0 0 0 p

where e is the total energy density, p is the pressure (both measured in
the local rest frame), and " denotes components with respect to the local
rest frame coordinates.
Therefore, in general coordinates, the form of the energy-momentum
tensor is
T = (e + p)u*uf + pg*®. (2.6)
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One can write
e=p(l+e¢), 2.7)

where ¢ is defined as the specific (per unit mass) internal energy, measured
in the local rest frame.
Let h,, be the projection tensor onto the 3-space orthogonal to u*

hyy = g,y + uyu,. (2.8)

Then, by contracting equation (2.5) with u; one obtains the conservation
of energy equation

uVe=—(e+pV (2.9)

while by contracting it with hg, one obtains the conservation of momentum
equation

(e + PV ut = — h*V,p. (2.10)

For a perfect fluid the quantities p, &, p must obey the first law of
thermodynamics

T dS = de + pd(1/p), 2.11)

where S is the specific entropy and T the absolute temperature.

By using the conservation of mass equation (2.4) and the first law of
thermodynamics (2.11) one can deduce from the conservation of energy
equation (2.9)

wVv,S =0, (2.12)

which expresses the fact that the fluid flow is adiabatic.

The fluid quantities p, &, p are related by an equation of state, which
arises from considerations of kinetic theory or statistical mechanics.

An interesting class of fluids consists of the so-called barotropic fluids
obeying the equation of state

e = e(p), (2.13)

which is assumed to be invertible giving p = p(e).

Since the rest mass density p does not intervene in the state equation,
these fluids can be described solely by the conservation of energy and
momentum equations (2.9)-(2.10). The mass conservation equation
decouples from the others and can be solved after the fluid motion has
been determined.

In this case the only role of the continuity equation is to provide a
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volume tracer. In this sense it can also be introduced even when there are
no conserved charges (baryon number, lepton number, etc.). The introduc-
tion of the continuity equation in these situations (which might occur
when discussing the early universe) greatly helps the physical inter-
pretation of hydrodynamical calculations (such as the evolution of bubbles
in the quark-hadron phase transition; Miller and Pantano, 1987).

An interesting class of barotropic fluids is that of fluids consisting of
ultrarelativistic particles in thermal equilibrium. For these fluids it is
possible to define an entropy function H(T, V) (Weinberg, 1972), where
V is the volume, such that

TdH =d(eV)+ pdV (2.14)
with e the energy density. The integrability condition is
J (e+p 1
8_e< T )—7. (2.15)

In thermal equilibrium, for such a fluid, one has e = ¢(T) and p = p(T),
and therefore equation (2.15) yields

P(T)=(e+p)T
and then it is obvious that
H(T,V)y=(e+p)V/T.
The entropy density n = H/V is then
n=(e+p)/T + const. (2.16)

An equivalent expression for # which is independent of temperature is

d
n=exp<fe :p). 2.17)

An example, of astrophysical interest, of these fluids is provided by a
gas in local thermodynamical equilibrium with radiation when the radia-
tion energy density greatly exceeds the total gas energy density. Since for
radiation one has e = ay T* (ag being the Stefan—Boltzmann constant, ag =
7.56 x 1073 in cgs. units) and p=3agT* when the radiation energy
density dominates, the fluid obeys the equation of state

e=3p. (2.18)

Also, from equation (2.16) one has

” = %aRT3.
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Other examples are provided by a fluid of massless neutrinos, for which
(Weinberg, 1972)

=1 4
e= 16aRT

or a fluid of ultrarelativistic electron-positron pairs (Weinberg, 1972), for
which

e=%apT*

In both cases the pressure is given by p = }e.

It is interesting to notice that in the early universe, at sufficiently high
temperatures, all the particles become relativistic. Therefore, the equation
of state

_1
pP=3¢€

would be applicable under these circumstances.

Another interesting case of barotropic fluids is provided by matter at
zero temperature. In fact, at T =0 the state equation depends on only
one parameter. Usually the state equation is given as

p=r(p)
and
e =e(p).

When it is possible to eliminate p one obtains a barotropic fluid p = p(e).
For instance, this is the case for a completely degenerate cold neutron
gas (Shapiro and Teukolsky, 1983), which is the crudest model for nuclear
matter in the interior of neutron stars. More realistic examples comprise
the cold e-n—p gas, the Harrison—Wheeler, and the Bethe—Baym—Pethick
state equations. These examples will be discussed in detail in Section 10.4
in connection with the stability of shocks in nuclear matter.

Another class of fluids of astrophysical interest consist of those obeying
a polytropic state equation of index 7,

p=K(S)p'. (2.19)

An example is provided by a gas in local thermodynamical equilibrium
with radiation when only the internal energy and pressure are dominated
by radiation.

Then one has

agT*

o
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and
p=3agT?,
hence
p=1%pe. (2.20)
From the first law of thermodynamics one obtains
S= 4agT?
3p

whence the polytropic state equation (2.19) with y =4/3 and

3§ \#3
K(S) =%(JR<'4;—> .
R

It is convenient to notice that, in this case, the polytropic state equation
can be written in the form

p=pleS), (2.21)

where, in equation (2.19), p has been expressed as a function of e and §
by inverting the relationship

e=p+3K(S)p*?3.

The polytropic gas state equation is usually considered in the analytical
properties of stellar properties. In fact, this state equation is a reasonable
approximation to the average thermodynamic properties of stellar material
and its simple expression makes it useful for analytical calculations (such
as in stability analysis; Zel’dovich and Novikov, 1971).

For the applications in astrophysics and plasma physics, an important
equation of state is that appropriate for a relativistic nondegenerate
monatomic gas, studied by Chandrasekhar (1939) and Synge (1957), called
the Synge gas for brevity. This state equation is the relativistic extension
of the nonrelativistic perfect gas law. Its underlying kinetic description is
in terms of a distribution function (the Juttner distribution function) which
is the relativistic counterpart of the Maxwell-Boltzmann distribution.
From relativistic kinetic theory it is possible to prove that, for an equili-
brium distribution function,

_ks

=—pT .
o PT (2:22)

P

which is the usual perfect gas law with kg the Boltzmann constant and
m the gas particle mass.
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Furthermore,
e+ p=pG(z2), (2.23)
with
m
z= 7(;7: (2.24)
and
G(z) = K4(z)/K,(2), (2.25)

where K, (z) are the modified Bessel functions of the second kind (Synge,
1957)

[

K, (z) = f e Z°*hY cosh ny dy.
(4]

Moreover the specific entropy S is given by

exp( _miS—S,)

A ) = pL(z), (2.26)
B
with

InL(z)= —zG(z) — In (_K_z(i)>’ (2.27)
z

S, being a constant reference entropy.

It is useful to have asymptotic expansions of G(x) and L(x) in the cases
of low and high temperatures (Synge, 1957).

One can show that for low temperatures, z— oo, one has, asymptotically,

5
~1+— 22
GE =1+, (2.28)
L(z)~ . /2/n 27, (2.29)
whereas for high temperatures, z — 0, one obtains
4
G(z) ~ e (2.30)
L(z)=ie 423 (2.31)

(where, in this formula, e denotes the Euler number).
For the Synge gas the ratio of specific heats is not constant. However,
it is useful to introduce a parameter §,

f=1+ ;’—8, (2.32)
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which is a function of z and has values in the range
4/3<$<5/3

(Fig. 2.1).

In the nonrelativistic limit, z— oo and §— 5/3, whereas in the ultra-
relativistic limit, z— 0 and §—4/3.

Also, in this case, by using some properties of the functions G(z) and
L(z), it is possible to prove that one can obtain a state equation of the
form (2.21), that is,

DP= P(e, S)
In fact,
e=p(l +¢) = pz(G(z) — 1).

eXp< - @,;@) —2L(p

Now

and it suffices to show that it is possible to invert the above relationship
yielding z = z(p, ).

Fig. 2.1. The quantity § = 1 + p/(pe) for a Synge gas as a function of
z=m/kgT.
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This is indeed possible because (Synge, 1957)
d 2y, dG
a(zL(z)) =—z L(Z)E #0.

A little caution is necessary when applying the Synge state equation.
In fact, in the relativistic regime (kT > mc?) one cannot ignore photon
production (when ions are also present) and, subsequently, pair production.
Therefore, in general, for a mixture of (usually nonrelativistic) ions and
relativistic electrons one must add to the Synge state equation for electrons
the contribution of ions and that of photons and pairs (Lanza, Miller,
and Motta, 1987).

In the following we shall always assume (except when stated otherwise)
that the fluids under consideration obey the equation of state of the form
(2.21); that is, we can take e and S as independent thermodynamical
variables.

This assumption is verified by the state equations considered in the
previous examples. It can be seen that more complex state equations, such
as those appropriate for nuclear matter, can also be put in this form.

In the next section we shall write the equations of relativistic fluid
dynamics in the form of a quasi-linear system and study its hyper-
bolicity.

2.3. Test relativistic fluid dynamics as a quasi-linear hyperbolic system

In many situations arising in astrophysical contexts or in laboratory
physics (plasmas and nuclear matter) one can neglect the gravitational
field produced by the fluid in comparison with the background gravi-
tational field. This amounts to the test fluid approximation, where the
motion of the fluid is assumed to occur in a given and preassigned space-
time .# endowed with a given Lorentz metric g. Then the equations
governing the motion of the fluid can be taken to be the conservation of
momentum equation

(e + pJu*V u* + h**V,p =0, (2.33)
the conservation of energy equation
u*'V,e + (e +p)Vu* =0, (2.34)
and the adiabaticity condition

wv,S=0. (2.35)
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1 hese equations must be supplemented by a general state equation
P =Dple,S), (2.36)

assumed to be sufficiently differentiable. All the influence of the back-
ground gravitational field is included in the covariant derivatives. By
introducing the field column vector U4, with 4=0,1,2,3,4, 5,

U=®we?S)", 2.37)

where T denotes transposition, the equations of test relativistic fluid
dynamics can be written as a quasi-linear system

AV, UB =0, (2.38)
where the matrixes A* are given by
(e +pu’dy, h*p,, h*p(]
A*=| (e+ p)és, u’, 0 |, (2.39)
03, 0% u*
where 0* and 0? indicate the null vector and matrix, respectively, and

DL, p. are the partial derivatives of p(e,S). Now we shall assume the
following restriction on the state equation

0<p,<l. (2.40)

As we shall see this restriction has a deep physical meaning connected
with causality and is verified by all the physically realistic state equations.
Now we can prove that the equations of test relativistic fluid dynamics
form a hyperbolic system. We have the following proposition.

PROPOSITION 2.1. The quasi-linear system (2.38)~(2.39) with the restriction
(2.40) is hyperbolic in the sense of Definition 2.1.

Proof. We must show that both conditions (i) and (ii) of definition (2.1)
hold. Let £* be the timelike vector field of .# which defines time-orientation.
A simple calculation gives

det (4°¢,) = (e + P E) (W) — peh**E,8,) #0

because &* is timelike and p, < 1.
Therefore condition (i) holds for any timelike £ In order to check
condition (ii) let us consider the equation

det (4°q,) = (e + p)*(’q.)*((u*q,)* — Peh**q,4,) = 0.
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First of all, let g, be a solution of
(*q,)* — ph*q,q5 = 0.

By putting g, = {, — u&, in the local rest frame with u* = 6% and with
the Minkowski metric #,,, we obtain

(o — Ivléo)2 - p;(§ - lv‘é)2 =0,

where & = (&), { =({;) are Euclidean three-vectors and (£)* = £;¢;.
This is a second degree equation in g,

(€3 — po(&)*Iu? — 2[Co&o — Pl + (5 — UL =0

whose discriminant is

Pe(C3(E)? + EJLP) — 28080l — [E)*(0)* — (L&) Tpe)
> pull3(E) + £3(0)? — 2Logolili — (£X(D + (6
= P[5 — (&*IL(L)?* — L8] + (Lolo + LiE)P) > O,
where use has been made of the restriction 0 < p, <1 and the fact that
& is timelike, &3 > (£)%,¢* is spacelike, and (§ <({)*. Therefore we have
two distinct real solutions p, and u_. The corresponding linearly indepen-
dent right eigenvectors d. are easily seen to be

— B — p£ LD
d:t = (e+p)a:t > WIth ay =ua(Ca_u'iéa)'
0

Now let us consider the solution

(w'q,)* =0,
u'l,
u,’
like), and has multiplicity four. The corresponding linearly independent
right eigenvectors dy, I = 1,2,3,4, are

which gives p, = I=1,2,3,4 (where u*¢,#0 because &* is time-

u* V5 v
doy=|0 [ dg=[0} dg=[0
0 0 0

(where v$,v% are two linearly independent vectors orthogonal to u* and
4,), and
Ov
d(4) =[-p|

4

Pe
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It is easy to check that u®gq, =0 is not a solution of
(u*q,)* — h**q,q,p. = 0.

Therefore, the eigenvectors d _, d,, 1=1,2,3,4 form a basis of R, for
any spacelike {*, and condition (ii) holds. Q.ED.

Remark. The corresponding left eigenvectors can be taken to be

L:t = (ai(cv —Hi év)’ - azia - haﬂ(Ca - uiéa)(Cﬂ - #iéﬂ)p.’s‘)

and
L(l) = (um Oa O)a L(2) = (VZM’ 0, 0),
L(3) = (v3ua 0,0), L(4) = (Ou’ 0, 1)

The eigenvalues u, and the corresponding eigenvectors are said to
represent “acoustic waves,” whereas p,;, and d,j, represent “material waves.”

As shall be seen in Chapter 4, the theory developed so far is strictly
related to the theory of characteristic hypersurfaces for quasi-linear systems
(Courant and Hilbert, 1953; Jeffrey, 1976).

Let X be a hypersurface in space-time .#, with the local equation in
local coordinates

$(x*) = 0. (2.41)

Then X is said to be a characteristic hypersurface for the quasi-linear
system (2.1) if

det (4%p,) =0, (2.42)

where ¢, =V,¢, for short.
Now in our case ¢ satisfies either

u'd, =0, (2.43a)

or
W)Y — " oy =0. (2.43b)

It is easily seen that ¢,*>0 and therefore X is a timelike or null
hypersurface. This is a fundamental causality requirement, as we shall see
in later chapters. Now we can define the normal speed of propagation ¥y
of the hypersurface T with respect to an observer, described by a timelike
world line of tangent vector field v*, v¥v, = — 1, as follows (Synge, 1960).
Let us consider a particle £ riding on the hypersurface = with four-velocity
w¥, wh¢, = 0, passing through the event O* of intersection of £ with the
world line of the observer v*. Then the square of the three-velocity w of



2. Mathematical structure 21

2 in the rest frame of v* at the event O* is

2_ g + v w,w,
("wy)?

(this is easily checked in Minkowski coordinates with v* = 6§). The normal
speed of propagation (squared) of the hypersurface T with respect to v*
at the event O* is defined as the minimum of the above expression for w?
under the constraint w*¢, = 0. An easy calculation then gives

vie_ WS
(@*% + v*vP)¢. 0,
The choice of the sign for ¥y can be done as follows. We define,

conventionally, the outward unit normal to T in the rest frame of the
observer v* as

(2.44)

V.= ¢a + Uavﬂ¢ﬂ
N CA X PR AR

Let w* be the four-velocity of a particle £ riding on the wavefront Z,
w*¢, = 0, future directed with respect to v* (i.e., w,v* < 0). Then V; will be
positive if the wave is forward propagating with respect to v, in the rest
frame of the observer v*, this is, if

(g** + Py, w; >0
which amounts to
o, <0.
Then from equation (2.44) it follows that

V= — VP,
AR A

If one takes as an observer the one defined by £, then

Ve=—un

and, therefore, the eigenvalues u are the opposite of the normal speeds of
propagation of the characteristic hypersurfaces relative to the observer
defined by £~ If one takes as observer u*, then for the material waves one
finds

V=0,

which expresses the fact that the corresponding characteristic hyper-
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surfaces are at rest with respect to the fluid. Similarly, for the acoustic
waves, one finds

Ve = /..

Therefore the requirement 0 < p,, < 1 is equivalent to the statement that
the acoustic surfaces have a nonvanishing propagation speed (the speed
of sound) not exceeding the velocity of light relative to the fluid. Some
authors (see Hartle, 1978 for a review of the different opinions) have
claimed that the condition p, < 1 is too restrictive. Their argument is that
in a realistic situation, with dissipative effects included, acoustic waves
will be dispersive. Then the correct restriction to impose on the equation
of state should be that the group speed of the waves be less than the speed
of light, a condition which, in general, is less restrictive than p, < 1.

Although this argument has some merit, in fact it overlooks the
important point that, once the mathematical model of nondissipative
relativistic fluid dynamics has been assumed [as is done in several
astrophysical problems, for example, in the analysis of equilibrium and
stability of neutron stars (Hartle, 1978)], it is inconsistent not to impose
the restriction p, < 1. In fact, it can be shown that violation of the latter
condition implies the existence of complex eigenvalues u and in its turn
this would entail the nonlinear instability of the constant solution (Boillat,
1981).

The correct way of investigating the possibility of p, > 1 is within the
framework of relativistic dissipative fluids (taking into account viscosity
and heat conduction). Within this framework one could check whether the
unstable mode (which exists in the dissipationless case under the condition
p, > 1) still persists or is damped by dissipation. An assessment of this
question would be of great significance for relativistic astrophysics and
particularly for the problem of the maximum mass for a neutron star
(Hartle, 1978). Violation of the condition p, < 1 could lead to a significant
increase in the maximum neutron star mass and this is a key parameter
for identifying black holes.

In many situations (neutron star interiors, accretion onto a magnetized
black hole, etc.) the effects of magnetic fields on a highly conducting fluid
cannot be neglected and this leads to the consideration of magnetohydro-
dynamical phenomena. In the next section we will introduce the basic
equations describing magneto-fluid dynamics in a relativistic framework
and investigate their mathematical structure.
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2.4. Test relativistic magneto-fluid dynamics as a quasi-linear
hyperbolic system

We start with a justification of the equations of relativistic magneto-fluid
dynamics. This will be based on the phenomenological theory of an electro-
magnetically polarizable continuum.

Another approach which might be used could be based on a microscopic
description in terms of the relativistic Vlasov equation, which would be
appropriate for a rarefield plasma. Here we shall follow the first approach,
because of its simplicity and greater generality.

Let us consider a fluid interacting with the electromagnetic field and
let T*# be the total energy-momentum tensor of the system (fluid and
electromagnetic system). The standard energy-momentum conservation
laws then are written

Vv, T* =0. (2.45)

The electromagnetic field will be described by two antisymmetric tensor
fields F*# (the electromagnetic field tensor) and I*® (the electromagnetic
induction tensor), obeying Maxwell’s equations (Dixon, 1978)

O0uF 3y =0, (2.46)
V1% = 4nJe, (2.47)

where J* is the charge current four-vector and [afy] denotes anti-
symmetrization with respect to the indices afy.

In addition to the energy-momentum conservation laws one has also
mass conservation, which can be written in a local form as

Vapa =0,

where p® is the mass flux four-vector. One can always introduce a scalar
p and a velocity field ¥* such that w*u,= — 1 and p* = pu®, p being
interpreted as the proper mass density. Then the mass conservation
equation is

V,(pu®) =0. (2.48)

The four-vector u* can be called the fluid four-velocity, although it
should be remarked that it does not represent, in general, the electron
velocity.

With respect to the vector field u* one can decompose F* and I*f in
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the following way

E*= F*ty,, B*f = F*f _ yl*Ef
“e " } (2.49)

D*=1I"u, H*=["_2yl*DP

where [«f] denotes antisymmetrization with respect to the indices a, S.

E* and D* are, respectively, the rest frame electric field and electric
displacement, and B*®, H*# represent the rest frame magnetic induction
and magnetic field.

Clearly all these vectors and tensors are orthogonal to the four-velocity
u®.

In a medium the relationship between the electric displacement
and electric field, and the magnetic field and magnetic induction, are
characteristic of the medium (and are ultimately justified in a statistical
mechanics approach), and are called phenomenological laws or constitu-
tive equations.

For most applications we can assume linear isotropic constitutive

relations for D%, H*® (Dixon, 1978)
D* =(1 + 4nk)E* (2.50)
H = (1 — 4my)B*8 (2.51)

with k and y the electric and magnetic susceptibility.

These quantities, in general, are functions of the density and temperature
of the fluid.

The charge current J* may also be decomposed with respect to u° as

J*=qu* +j*, (2.52)

where ju, =0 and q = — J%,. Therefore, g is the proper charge density
and j* is the conduction current.

We shall assume a linear constitutive relation between j* and E* (Ohm’s
law),

j*=0"Ep, (2.53)
where 6% is the conductivity tensor.

In general, in the presence of a magnetic field, the conductivity tensor
will be anisotropic, and will be a function of density, temperature, and
the magnetic field.

Here we shall assume that the magnetic field is sufficiently weak that
the conductivity tensor reduces to

0 = og** (2.54)

with ¢ a function only of density and temperature.
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Then, the limit of infinite conductivity ¢ = co0 and finite conduction
current implies the usual approximation

E,=0.

Notice that in the relativistic framework this is the only approximation
which is made, as opposed to the nonrelativistic case where also the
displacement currents are neglected in the Maxwell equations (2.46)—(2.47).

Under the assumption of local thermodynamic equilibrium a general
expression can be found for the total energy-momentum tensor of the
fluid and electromagnetic field. We shall adopt here the results of Dixon
(1978), which are based on an elegant and deep theory. Dixon defines the
local equilibrium states as those for which, locally, the entropy production
rate V,s* (where s* is the entropy flux) vanishes and is a minimum. By
assuming that s* depends only on the variables T2, pu?, Fog, 1%, Dixon
finds the following expression for T,

T* =T + T + T + T2, (2.55)
with
T = p(1 + e)uu® + ph*® (2.56)

the usual fluid’s energy-momentum tensor,

ok Ox ok ox
af _ 1 2 2 a. B _ 1 2 42 af 5
T 2T<a E*+- B)uu 2p<apE +apB )h, (2.57)

and
E’=E,E*, B%*= %B“"Baﬂ,

1

TY = o u”F[y“I“”uu, (2.58)
1

T4 = o [FIPY — L F ,17%g*8]. (2.59)

Now, whereas the tensors T% and T% must be obviously attributed
to the fluid and electromagnetic field, respectively, there is no unique
logical way of assigning T% and T% to either components.

Notice that T% corresponds to the Minkowski tensor, while T% + T$#
corresponds to the Abraham tensor (Dixon, 1978).

The equations of relativistic magneto-fluid dynamics are usually derived
by assuming the Minkowski form for the energy-momentum tensor of the
electromagnetic field (Lichnerowicz, 1967). Here we shall see that the same
equations are obtained if we start from the full energy-momentum tensor
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(2.55). In fact, we shall assume (as is usually done and it is a good
approximation for plasmas) that the susceptibilities k and y are constant,
hence we can drop T%. Furthermore, from the requirement E*=0, it
follows by equation (2.50), D* =0, hence T% = 0.

Finally, from equations (2.49)—(2.50) we have also

I = (1 — dny)F®,
which can be rewritten as

1
%8 = — Fb, (2.60)
u

where p is the (constant) magnetic permeability.
It is convenient to introduce the magnetic induction field B as measured
in the local rest frame,

Ba = %”uﬂy&uﬂFW’ (261)

where 7,4,; is the Levi-Civita alternating tensor (Synge, 1960; Misner
et al., 1973).
Then, because in our case F*’u; =0, from equation (2.61) one obtains

F =" B,u,. (2.62)
By using equations (2.60)—(2.62) in equation (2.59) we obtain
4nuT¥ = — B*B? + 4 B,B°g* + B, B°u*u®, (2.63)
and, therefore, by introducing the vector
|
N
the total energy-momentum tensor T** can be written as

T* = (e + p + | b1 )uu® + (p + §|b]2)g* — b*P*, (2.65)

b = B (2.64)

where e=p(l +¢) and |b|? =b,b* (notice that b°u,=0, hence b* is a
spacelike vector and |b|2 > 0).

Substituting equation (2.62) into the Maxwell equation (2.46), and taking
the dual (multiplying by #*##?) yields

V (u*b? — b*uf) = 0. (2.66)

The other Maxwell equation (2.47) can be used in order to calculate
the charge current in terms of the given fields b*
The equations of relativistic magneto-fluid dynamics are then the
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conservation of energy-momentum
vV, T =0, (2.67)
the conservation of mass
V. (pu*) =0, (2.68)
and the relevant Maxwell equations
V(b — b*uf) =0, (2.69)

together with the state equation in the form e =¢(p, S).

The equations we have obtained are in conservation form. Now we will
develop some consequences of these equations and obtain an equivalent
set of equations (not in conservation form) which, in many cases, are more
convenient to utilize.

By contracting equation (2.69) with uz and b, respectively, we obtain

WUV by + Vb = 0 (2.70)
3UV, b1 + b2V, u* — bV u, = 0. @271

From equation (2.67), by contracting with u; and using equation (2.71)
we obtain the fluid conservation of energy equation

u'V,e + (e + p)\Vau* =0. (2.72)

From this equation, the conservation of mass equation (2.68), and the first
law of thermodynamics (2.11) we obtain in the usual way the adiabaticity
condition

wv,S=0. (2.73)

By using the adiabaticity condition, equation (2.72) is equivalent to
eu’V,p+ (e +p)Vu* = 0. (2.72)
From equation (2.67), by contracting with by and using (2.70) we obtain
uuPV by = (e + p)~'b*V,p. (2.74)

From equation (2.67), by contracting with hy, and using equations
(2.70)—(2.72) and (2.74), we obtain the conservation of momentum equation
in the form

(e +p + bV u* — b*V b* + (h** + u*u*)b,V b"

(2.75)
+

) ((e + p)h** — €,|b|*utu™ + b*b*)V,p = 0.
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Finally, the Maxwell equations (2.69) can be rewritten in the form

WV, bP — bV, uf + (—e,bPu* + uPb*)V,p = 0. (2.76)

|
(e+p)
We remark that equations (2.67)—(2.69) are equivalent to equations (2.75),
(2.76), (2.72)), (2.73), and (2.70). In fact, let G*, H?, G, K, H denote the left-
hand side of equations (2.75), (2.76), (2.72'), (2.73), and (2.70), respectively.
Then it is easy to check the following identities:

|b|2 er
G* =V, T 4 4V, T* + b,V (u*b? — uPb* u“(l + 1-=
(s Vel ) e+p\ Tp

+ (b,,V T + (e + p + | b|P)ugV (u*b? — ufb%)

(e+p)
|b]?

Tp?

—ut e.,sva(pua)a

H? =V (u*b? — b*uf) +( )(b V.T* + (e + p + | b|)u,V (ub’ — b*u?))

+(uyV T + b,V (u'b’ — bu V))( )(1 —¢e/Tp)
ﬂ ’
~Tp 2V (o),
5 . x . (e+p) .
G = gV, T + b,V (u*b? — b u"))( Tp) + T eV (ou®),

1 (e+p) )
K = ——( uv, 7%+ b,V b — buty + <Py pu
Tp( p oVl )+ Valo)

H = ugV (u*b? — ufb%).

From these identities it is apparent that equations (2.67)—(2.69) hold if
and only if equations (2.75), (2.76), (2.72), (2.73), and (2.70) hold. Notice
also that one has

utb, G* b8G
HE — b =yt " — ().
Vﬂ[ e+p+|b|2+e+p] wV,H+ HV u" =0

Hence, if equation (2.70) holds on a hypersurface % transverse to the
vector field u#, it will hold also in a neighborhood of % as a consequence
of the remaining equations.

Now we will investigate the mathematical structure of the above



2. Mathematical structure 29

equations. This is a problem which is important not only conceptually
but also for practical reasons as in the case of numerical computations
(the numerical techniques can vary widely for different classes of equations).
The question we shall investigate is that of the hyperbolicity of the
equations of relativistic magneto-fluid dynamics. In order to answer this
question it is necessary to analyze in detail the various modes of wave
propagation and this analysis gives considerable insight into the physical
content of the theory. First of all, we shall write the equations of relativistic
magneto-fluid dynamics as a quasi-linear system.

We take equations (2.75), (2.76), (2.72'), (2.73) as the field equations for
the field unknown

U= @w"b"p,S). 2.77
These field equations can be written in matrix formulation
AV, UB=0, 4,B=0,...,9, (2.78)
with
Eu®d%, — b*" + p**b,, 1%, 0O
baé‘:a - uaé‘:’ fau’ ome
A= , (2.79)
nds, 0z, eu’, 0°
03, 03, 0%, W

where n =e+p, E=1n+b|%, p** = h* + wus,
1 1
14 = —(h** — €, |bl*utu* + b*b%), and f*= — (e, + )
n

The characteristic matrix A%*$, then is written
Eadt, m", 1%, OF
B&L,  —adk  fr O
nd.s 0,, e 0
0,, 0,, 0, a

¢, =

where a = u*¢,, B =b*¢,,
/ 2
1u=¢u+<1 _&lbl )auu+§bu’
n n
|
ft= —E(—ae;,b“+Bu“),

mt = (¢* + 2au*)b, — B,
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Now it is easy to show that

det(4*¢,) = Ea®*A%N,, (2.80)
where
A= Ea* — B? (2.81)
and
Ny=n(e,— Da* —(n + e;,lblz)azG + B%G (2.82)
with
G =g""¢,9.

Now we discuss some properties of the various modes.

LEMMA 2.1.  For any timelike vector £* the condition (i) for hyperbolicity [i.e.,
det (A%¢,) # 0] holds, provided that e, — 1 > 0.

Proof. From equation (2.80), by putting ¢, = &,, we have that det (4%¢,)
can vanish only if

a=0,

or
A=0

or
N,=0,

all these quantities being evaluated for ¢, =£,.
Without loss of generality, at a given point, it is possible to choose an
orthonormal frame such that

ut = (1’0’ 0, 0)’ b* = (Os |b|50a O)s éa = (605 éls 6250)-

Then
a=¢&,#0

and
A=n& +|b*(&-¢)>0

because &, is timelike.
Furthermore,

N, =€,E& — [bPE} >0
because e, — 1 > 0. QED.

Note. If €, <1 then N,=0 can have roots in which hyperbolicity is
violated.
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PROPOSITION 2.2. For the material and Alfvén modes one has G > 0, that is,
the corresponding hypersurfaces ¢ = const. are timelike.

Proof. At a given space-time point (x*) construct the orthonormal frame
(u*, b*, eb, €4), where b*=10b"/|b| and ehu,=esb, =eb, =elu, =0,
ebes, =0, ehe,, = e3e3, = 1. Then

B .
' = —aut + — b + ¢ eh + el

|b]

The material waves are defined as the solutions ¢ = const. of a = 0, hence

B2
G=W+C§+C§>0.

The Alfvén waves are defined as the solutions ¢ = const. of

hence

B* B?

C="Ftwr

+ci+c2>0. QED.

Note. For the magnetoacoustic waves, defined as the solutions ¢ = const.
of N, =0, it is easy to check that, under the assumption e}, # 1, one has
G+#0.

In fact G=0in N, =0 implies a = 0 or e, — 1 =0, and by the previous
proposition, a = 0 is incompatible with G = 0.

Now let us introduce the quantity

b= _F

It is easy to check that, under the assumption e}, > 1, one has a’+ G>0,
for all ¢ satisfying the characteristic equation.

In fact, by using an orthonormal frame as in the previous proposition
it is seen that

a?+G=0

iff u* = — a¢*.
Therefore, ¢* would be timelike, and by Lemma 2.1, it cannot be a
solution of the characteristic equation.
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PROPOSITION 2.3. One has b2 <|b|? and b2 = |b|? if and only if ¢* = — au*
B
—— b*,
MEE

Proof . In local Minkowski coordinates (x*) such that u* =64, g,, =7,,,
one has b° = 0. Also,

(b <Y (BRY(#Y%  hence B2 <[b|2Y ()
But a? + G =Y (¢, and the proposition follows.
B .
Also, from the proof of Proposition 2.2, ¢*= —au* + mb“ + ¢, eh
+ c;eh, hence
B2 B2 | b|2

G+a?>=——+c2+c2 therefore, b2= =|b|?
R " B2+ |b|A(3+c3) bl
iff

02 = C3 = 0 QED

Now we investigate the normal speeds of propagation of the various
waves with respect to the observers moving with the fluid. We recall that

W) &
@+ uul)ggy A+ G

PROPOSITION 2.4. The magnetoacoustic wave fronts, solutions of N, =0,
under the assumption e, > 1, have four normal speeds of propagation + Vi
(slow waves), + Vi, (fast waves), such that 0 < Vg, <c, < Vg, <1, where

csz\/;; is the hydrodynamical speed of sound. When e,=1, then
b
Ve =—"and Vy, = 1.

JVE
Proof . It is easily seen that

N _G—ZP(V2)
a-vyr

where

P(VE)=n(e,— )Wi—(n+e,lbl> bV - V) +bi(1 - V)
Now
P0)=b2>0, P(1)= ne,— 1)=0,

and P(c2)=(1 — c)(b? —|b|*) <0.
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If e, =1, then
P(V3)=(1—-V(-EVi+b})

which has the following zeros

b
vi=1, Vi=

2
2«1,
E

B
If ¢,> 1, b2 =|b|?, then by Proposition 2.3, ¢* = — au“+Wb“ and

P(V2) has two zeros, c2 and |b|%/E, both less than 1.

If e,>1, b? <|b|?, then P(1)>0, P(c?)<0, P(0)>0, and therefore
P(V2) has two real roots, between 0 and 1, which are denoted by V3,
V3, such that

0<Vy<c<Vy<l Q.ED.

COROLLARY. Theroots of N, = 0 can coincide if and only ife}, > 1,b% = |b|?,
and

n=_(e,— 1)Ib|%

Note. The normal speeds of propagation of the Alfvén wave fronts are
+ V5, where

b2
yz, =1
A E
Also,
P(Vi4) = Viale, — 1)(b2 —|b]?).

and therefore P(V3,) <0, hence Vi, < Vs, < Vs,

It is interesting to have a graphical representation of the various wave
front speeds (Lichnerowicz, 1971).

At a given point, consider the orthonormal frame (u*, b* e¥ et)
introduced in the proof of Proposition 2.2. We have seen that

B .
P = — au“+mb“+02e‘2‘ + czeh.

. ) B
For the sake of notation write t = —a, x =m, y=c¢,, and z =¢;. Then

the light cone G = g*¢,¢, =0 is written as

=24+ x2+y2+22=0.
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The material waves cone u*¢, =0 is
I'y:it=0.
The Alfvén waves cone A2 =0 is
Ly +161%)% = |b]*x* =0,
whereas the magnetoacoustic waves cone N, =0 is
Cyin(e, — t* — (1 + €,|b|1)2(— 2 + x2 + y2 + 22)
+1b12x3(— 2 + X2 + y* + 2%) = 0.

Since these cones admit the axis Ox as an axis of rotation it is convenient
to study their intersections with the planes t = 1 and y = 0. We obtain the
following curves

S:x2+4+z2=1 from the light cone I,
Six=+ \/E from the Alfvén waves cone, and
Sy:Ee,—(E+e,—1)(x2+ 22+ x¥ -1+ x> +2%)=0

Fig. 2.2. The curves drawn are as follows:

S :x2+y?—1=0  Light cone,

Sx=+(E)? Alfvén cone,

Syike,—(E+e,— (x> + )+ x¥(— 1+ x> +2%)=0
magnetoacoustic cone, E = (1 + |b|?)/|b|?
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from the magnetoacoustic waves cone, where

n+1b2

E:
|b]?

Now we determine the right and left eigenvectors corresponding to the
various modes of propagation.
At a given point, without loss of generality, we choose an orthonormal
basis such that
u*=(1,0,0,0), b,=(0,]b],0,0),

éa = (éOaélaéb O)a (284)

and £, = — 1.
Let ¢, =, — pé&,. First of all, we consider the case where

Co C1>
det =0.
) (ﬁo &1

The physical interpretation of such a {, is the following. Let H* be the
magnetic field in the rest frame of the observer with four-velocity £*, given
by

Hv = _ F*va'é”,

where F** is the dual of F*#. Then it is easy to check that {,H* =0.

Fig. 2.3. As in Fig. 2.2, the singular case with £ = e,
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In the case under consideration one has

Co = ﬁéo,
C1 = ﬁ§1
for some factor B, ¢, =((B — w)o, (B — w1, {2 — pés, 3). Then we have
a= (ﬂ - ﬂ)éO’
B =1b|(B — ¢,

A= (8- wHEES —1bI128D),
Ny = (B~ w(L — (n+,|bI1)EG + 616116 + nle, — (B — 1)*E3).

Obviously, a =0 iff u = f, and it is easily checked that this eigenvalue
has multiplicity 8 and the corresponding right eigenspace has dimension
8. A basis is given by the vectors

{(0%,0%,0, )T; (1,0%,0,0)"; (6% 0%,0,0)"; (115,54’ b"$°, 0%, 0, 0);
(0% u%,0,0)T; (0%, ¢%,0,0)7; (0%, 5,,u*b°$?, 0,0)T; (0%, b% — |b]?,0,0)"}.
The corresponding basis of left eigenvectors is
{(uu’ 0‘4, 0’ 0), (bu’ 0‘4’ 0’ 0), (nuﬂyéuﬂb)‘¢6’ 0‘4, 0’ 0)’ (0‘4’ uu, 0’ 0), (0‘4’ b‘p 0’ 0)
(Ou’ ”Mﬂ)‘&uﬂby¢6’ 0’ 0)’ (Ou’ ¢u’ 0, 0), (0‘4’ 0‘4, 0’ 1)}
The remaining two eigenvalues are the solutions of
N,
=0.
(B —w?

(2.85)

PROPOSITION 2.5. Under the assumption e, > 1, the solutions of (2.85) are
real and distinct.

Proof. Equation (2.85) can be rewritten as
(B — w’lu(e, — 1)é5 — D1+ 2DB(B — W) + D(1 — p*) =0,

where D = — (n + €},|b|%)EE + |b|2£2 <.
The discriminant of the above second degree equation is

D[(1 - B*)(e, — 1)¢§ — D]
and is therefore positive. QED.

To these real and distinct solutions there correspond two linearly
independent right (left) eigenvectors which, together with those previously
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found, form a basis of R!°, Their expression is the following

d — (da, da+4’d8’d9)T’
with

E
d* = Ea¥(Bf* — al®) + 7“(32 — ¢} |b|%a?)2au + ¢%),
derd = gd“ + Eadf?,

d® =Ed%A,
& =0, (2.86)

where in equation (2.86) one must substitute ¢, = {, — u&,, with u the two
roots of equation (2.85).
The corresponding left eigenvectors are

§= (Sva Sv+4a S8a S9)a
with
s, = By(G + 2a*)b, — Ea*n¢,,
Sa+v= — Ean(G + 2a*)b, + EaBn¢,,

5o =0. (287)

Now we investigate the case where

CO Cl
det(i0 51) #0.

In the basis (2.84) previously introduced we have

a = (Lo — uéo)-

Therefore, the solution of a = 0 (material wave) is then

R
o

It is easy to see that this solution is not a root of A=0 or of N, =0.

(2.88)

Therefore, u =C—0 is a double eigenvalue of the characteristic matrix.

So
The corresponding two linearly independent right eigenvectors are
dl = (OM’ ¢M’ Oa O)Ta

d, = (0%,04,0,1)". 289)
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The corresponding two linearly independent left eigenvectors are

N
$; = (0‘4’ - §¢ua la 0):

$; = (O‘n Om Oa 1)

(2.90)

For the Alfvén waves we have
A= (EES — 1bIPEhm? — 2AEE Lo — 117, L) + ECG — 16125
The discriminant of the above polynomial is
E[b*(&180 = &ol1)* >0

and, therefore, A = 0 admits two real and distinct roots.
When these solutions are not roots of N, =0, the corresponding two
linearly independent right eigenvectors are

T
d=<d“,§d“,0,0> , (291)

where d* is subject only to the constraints
d*¢,=0, d"b,=0.

When these solutions are also roots of N, =0 we have

B
d= (d"a;du - 1 ¢vdvfua - L ¢vdva 0): (292)

’ 2 /
epa epa

with d* subject only to the constraint

B
dv<bv -—— (bv) =0.
eya

The two linearly independent left eigenvectors, in the case N, #0, are

B
s= (su, - =5 0,0), (293)

where s, is subject to the constraints
su(@* + 2au*) = 0 = 5,(Bb* + | b|*au*).

In the case when also N, =0, the left eigenvectors remain the same as
before. The only difference is that in this case the two vectors ¢* + 2au*,
Bb* + |b|?au* are no longer linearly independent and therefore the two
constraints reduce to only one.



2. Mathematical structure 39
Now we investigate the solutions of N, =0.

LEMMA 2.2. In the basis (2.84) the following inequality holds
(3<(E+¢H0 -5

Proof. The orthonormality relations are

— oo+ {181 + 026, =0, (294)

-G+ +08+08=1 (295)

If ¢, = &, =0, then {, = 0 and the inequality is satisfied. If £, #0,&, =0,
from (2.94) we obtain {,, which after substitution into (2.95) yields the
inequality. If £, #0, from (2.94) we get {,, which after substitution into
(2.95) gives a second degree equation for {,, whose discriminant must be

nonnegative (because {, is real) and this inequality is equivalent to the
statement of the lemma. Q.ED.

LEMMA 2.3. Let ¢ > 1, p,(c), and p,(c) be
@) =p—/a p)=p+./a
with
_Goboe=1) _1+-1DE-13)
P ge—y T+ 8-

Then u,(c) and p,(c) are real, distinct, and satisfy

-1 </,L1(c)<c—°</42(c)< 1.
0

Proof. From Lemma 2.2 we obtain é2 — {2 > 0, hence g > 0 and p,(c), p(c)
are real and distinct. Furthermore, the function

S =p*[1 +(c = DEF+ 2ulolo(l — ) = 1+ {§(c — 1)

has the coefficient of u? positive and its roots are p,(c), u,(c). Also, it is
easy to check that

f€o/0) <0, f(1)>0, f(-1)>0
whence the inequality of the lemma. Q.ED.

LEMMA 2.4. Let V; be the normal speed of propagation of the characteristic
hypersurfaces ¢ = const. with respect to the medium, which in the basis (2.84)
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is

(Lo — Ivlfo)2
Vi= . 296
: (G — &)+ —né) + (3 (256)
Then
|
Vi) = V(a0 = .
Proof . By direct calculation. QED.

PROPOSITION 2.6. Ife,> 1,1 # (e, — 1)|b|*, then N, =0 has four real and
distinct roots.

Proof . If e, =1, then Ny = — AG and its roots are those of A (which are
real and distinct) and of G, which are also real and distinct.
Furthermore, from Proposition (2.2), we have G > 0 when A = 0. Now
we discuss the case e, > 1.
N, is a polynomial of 4th degree in y. One checks that

N,1)>0, Ny(—1)>0.

It is easy to check that the four real numbers

E E
ﬂl(e;)a ﬂz(e;,), ﬂ1<W>a “2<W>

are all distinct, as a consequence of Lemmas (2.3)—(2.4).
Furthermore,

b 2
NoLia(e] =0 (1 = ey ~ el + (G = pulep)ea) + 3]

L€ = palep)€a)* + {31 <0,
bl

b
Ny[pa(er)] = e

—(1 —e)[(; — #2(6;,)51)2 + (¢, - liz(e;,)éz)z +3]

‘L€z — liz(e;,)éz)z +¢31<0,

SHES R (NE
orale) o
{fo-nl) +s)en
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wl i) J= =" (e o)
el
-[(cz —u(lb%)éz)z +C§]50,
N4<§—Z)>o.

Py = [z — mlep)&a)® + 102 — pal€,)82)* + (31> 0

When

then
Nyl pi(e)]1 <0,
N,lpa(er)]1 <0,

and, therefore, N, = 0 admits four real and distinct roots.
When

S [CE S I (GRS

then we also have four real and distinct roots.
When P, =0 and P, =0, then

§2=C2=C3=0

and the roots of N, =0 are
E E
ﬂl(e;)a ﬂZ(e;J)a ﬂl(W)a ﬂ2<W) QED

The right and left eigenvectors, in the case when all the roots of N, are
distinct and when none of the roots of N, =0 coincide with any of 4 =0,
are

d= (da’ da+4’ d8’ dQ)T’
with

E
d* = Ea¥(bf* — al) + 7“(32 — &,1b[2a?)2au® + ¢%),

B
d** == do+ EaAf*,

d® = Ea?A, 2.97)
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d°=0,
§= (Saa Sa+4a Ssa S9)a
with
s, = — Bn(G + 2a*b, + a*nE¢,,
Se+a = Ean[(G +2a*)b, — B¢, ],
sg = — EaA,
5 =0. (2.98)

When one or two of the roots of N, =0 coincide with one or two roots
of A =0, then the corresponding eigenvectors are those given by equations
(2.91)—(2.93).

Now we treat the case 7 = (¢}, — 1)|b|*.

PROPOSITION 2.7. When n = (e}, — 1) |b|%, €, > 1, there exists £* such that
both roots of A are roots of N, with multiplicity 2, and a basis of eigenvectors
does not exist. For such &* the hyperbolicity condition is violated.

Proof . In fact, by choosing, in the frame (2.84),
{3=0,=¢,=0, we have

A2
<o

and therefore the roots p,, i, of A have multiplicity 4 for the characteristic
equation. But to each of them there correspond only three linearly
independent eigenvectors, equation (2.92). Q.ED.

A detailed and thorough examination of all cases where the hyperbolicity
condition is violated can be found in the article by Anile and Pennisi
(1987). The lack of hyperbolicity of the covariant equations of relativistic
magneto-fluid dynamics in the form (2.78)—(2.79) is an indication that
great care must be exercised when performing numerical calculations with
these equations.

It is interesting to remark that the field variables (2.77) are not all
independent because they satisfy the algebraic constraints wu, = —1,
b*u, = 0. Therefore, the lack of hyperbolicity of the system (2.78)—(2.79) is
plausibly related to a choice of the field variables that are not all indepen-
dent. Hence, after having solved the system of field equations (2.78)—(2.79)
only those solutions satisfying the above constraints are acceptable. This
could be achieved by imposing the above constraints on a given noncharac-



2. Mathematical structure 43

teristic initial hypersurface & because it is possible then to show that the
constraints are satisfied in a neighborhood of # (Anile and Pennisi, 1987).

For both conceptual and practical reasons, such as in numerical
calculations, it is important to deal with hyperbolic systems. In the next
section we will introduce a method, based on the entropy principle, by
which a given set of evolution equations, if suitable conditions are met, can
be transformed into a hyperbolic system. In Section 2.6 this method will be
applied to relativistic fluid dynamics and in Section 2.7 to relativistic
magneto-fluid dynamics.

2.5. Supplementary conservation laws and symmetrization

In this section we shall discuss a rather deep and elegant theory of
the hyperbolic systems of mathematical physics, which originated with
Friedrichs and Lax (1971) and Friedrichs (1974) and which has been
extended by Boillat (1974, 1976) and Ruggeri and Strumia (1981a).

Let us consider a quasi-linear system of conservation laws

V, F* =f4 (2.99)

For the moment we do not assume that (2.99) forms a hyperbolic system
when written in the form

AV, UB =f4, (2.100)

A
with A% = ik and where the field U varies in an open domain D of R¥.

We shall assume only the first condition of hyperbolicity, that is,
det (A%*¢,) #0. (2.101)
We shall also assume the existence of a supplementary conservation
law of the form
V.h* =g, (2.102)
which holds as a consequence of the system (2.100), that is, for any solution
of (2.100) which is sufficiently differentiable.

More precisely, we shall assume that the supplementary conservation
law is obtained from the system (2.100) by linear combinations of the form

oh*
A= 21
U B auB ( 03)

UAfd=g, (2.103)
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where U4 = U'4(U®) represents a set of multipliers. Examples of these
systems are the equations of Newtonian fluid dynamics and of relativistic

fluid and magneto-fluid dynamics.
aA

oF . . . .
Since A% = ik equation (2.103) can be written, in terms of different-

ials, as
UAdF*4 = dh® (2.104)

from which we see that U’ is determined only by the structure of the
system of conservation laws (2.99) and the supplementary conservation
law (2.102) and does not depend on the particular field U chosen in order
to write (2.99) as a quasi-linear system (2.100).

For this reason, in order to obtain explicit expressions for U’ from the
relations (2.104) (also called the compatibility relations), it is possible to
start with a field U which is more suitable. Because of the condition
det(A%*¢,) #0, we can take as a field

Ut=F4¢, (2.105)
which implies
A, =64

By multiplying equation (2.103) with £,, we obtain

oh
U= FTazS (2.106)
where
h=h¢, (2.107)

Equation (2.106) gives simple expressions for U’in terms of the field
Ut = F*4¢,

Now we shall assume that U is defined in an open convex subset D of
RY and that h is a convex function of UeR". Systems of conservation
laws possessing this property are called convex covariant density systems
(Ruggeri and Strumia, 1981a).

Then for such systems the Jacobian matrix

out  9%h

UE ~ gU4aUt
is symmetric and positive definite in the convex domain D of R¥. Therefore,
a theorem of analysis (Berger and Berger, 1968) shows that the mapping
U< U’ is globally invertible in D. Hence, U’ can be taken as a bona fide
new field in D < RY.
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This remarkable property is the underlying motivation for calling U’
the main field associated (uniquely) with the convex covariant density system
(2.99) and (2.102).

It is of great interest to investigate the form taken by the system (2.100)
when expressed in terms of the main field U'. One has the following
proposition (Ruggeri and Strumia, 1981a).

PROPOSITION 2.8. A convex covariant density system is a conservative
hyperbolic symmetric system in the field U'.

Proof. Let us consider the following Legendre transformation

W* =U4F*4 —p*, with h'* = K4U'®).

Then
on* .
que =
because
A oF™ _ oh*
oUB  oUu®
It follows that
. oF oZhe
A =

U~ aUuaU'B’

which is a symmetric matrix.
The first condition of hyperbolicity

det (A54¢,) #0
is easily verified. In fact, let b’ = W'*£; then
W=U4U4-h

and K is the Legendre transform of h. Therefore, from well-known
properties of the Legendre transform of a convex function, k' is also a
convex function.

The second condition of hyperbolicity, [Definition 2.1., (ii)] holds
necessarily as a consequence of the symmetry of A4, Q.E.D.

The reduction of a quasi-linear symmetric hyperbolic system is very
important from the mathematical viewpoint because a powerful theory is
available to deal with the Cauchy problem. In particular, the following
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theorem due to Fisher and Marsden (1972) is one of the simpler and more
useful resuits.

THEOREM. Let H*(R",R™) denote the H® maps from R" to R™ [ for each
integer s>0, H*(R",R™) is the space of all uc*(R",R™) such that all
distribution derivatives D*u with |a| < s belong to L*(R", R™)], endowed with
the usual Sobolev norm

luli= 3 le“u(x)Izdx,
O<glal<s

and let U* < H(R", R™) be an open set. Let 6 > 0, and for (t, x, u)e( — 3,0) x
R" x U, let A'(t,x,u) be symmetric m x m matrixes and B(t,x,u) an
m-component vector, assumed to be H>-functions of (t,x) and rational
Sfunctions of u with nonzero denominators. Given uaeU*, s > n/2 + 2, there
exist 0 <& < 0 and a unique u(t,x), |t| <e, xeR", which is H* in (t,x) and
which satisfies the following initial value problem

u(05 x) = uO(x)s

ou ; ou
Frin At x, “)ﬁ + B(t, x, u).

Furthermore, u(t, x) depends continuously on u, in the H*-topology.

More general results have also been obtained.

This theorem (and generalizations thereof) ensures that the differenti-
ability properties of u(t,x) are the same as those of uy(x). This is to be
contrasted with the much weaker results which can be obtained for
quasi-linear hyperbolic systems without the symmetry assumptions.
In particular, for quasi-linear hyperbolic systems which have multiple
characteristics (are not strictly hyperbolic) the Leray—Ohyia theory
(Lichnerowicz, 1967) requires infinite differentiability for the initial datum,
an assumption that is too restrictive for many physical applications.

In the forthcoming section we will apply the theory expounded in this
section to relativistic fluid dynamics and determine the main field.

2.6. Main field for relativistic fluid dynamics

The fundamental equations of relativistic fluid dynamics can be written
in the form (2.99), that is,

V,F 4 =0, (2.108)
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T
Fa B < a)’
pu
and the supplementary conservation law can be taken to be

V.,h* =0,

with

with
b= — pSu*.

The main field U’ is determined by equation (2.104).

Let
[ Vs
v (w)

wdT* +y d(pu®) = — d(pSu®).

Then U’ obeys

Let

f=1+£+B
p

be the relativistic enthalpy of the fluid. Then,
T* = p fuu? + pg*

47

(2.109)

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

and one obtains from (2.113), after contracting with u,, and using the

thermodynamic relation

d
df =Tds + 2,
P
that
S
— (wﬂuﬂT + p)dS + (l/I + vg —fwﬂ>du" =0,
where
o' = put.
Equation (2.16) yields
1
Wﬂ = ?uﬂ,
f-=TS
.

T

(2.115)

(2.116)
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whence
1 ug
- 2.1
v T (G + 1)’ 2117)

G=f-TS-1 (2.118)

where

is the relativistic free enthalpy.
Having determined the main field U’, the next step is to show that

h=h%¢,
is a convex function of U, that is, that the quadratic form

0*h

=W5U’A5U,B (2119)

0

is positive definite for all variations 6U’ of U'.

Now
Q=06U41 g <6h 5U’B)=5U”‘ g (a—héU")

ou4\oU® ou1\ oU®

However, as we have seen in the previous section, it is possible to take
as the field

U= FHg,
hence, by (2.105)—(2.106),
h
aa?éUB = U'BsUB,
It follows that
Q =d8U16UA. (2.120)

We remark that, because of the symmetry of expression (2.120) with
respect to the transformation U<>U’, h will be a convex function of U also.
Then,

T2Q = (— updT + Toup)3(T*E,) + [ — (G + 1)8T + TOG1d(pu’c,).

A tedious but straightforward calculation shows that

TQ = pfv6udu’ + 25pdv + pvoSST + gépép, (2.121)

where
v=u,
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Now the thermodynamic stability condition for a fluid element in
thermal and mechanical equilibrium with its surroundings is that the
internal energy ¢, considered as a function of specific entropy S and density
p, be a minimum (McLellan, 1980). This stability condition, expressed in
terms of the free enthalpy G, is equivalent to the convexity of the function
— G(T,p).

It follows that the quadratic form

K?= —p2<5<g—ﬁ>5p+5<gi>57"> (2.122)

is positive definite.
A quick calculation shows that

K? = p? (%5p5p + 5S<5T>,

hence

TQ = pfvduybuf + 25pdv + %KZ. (2.123)

Now the quantity on the right-hand side is a invariant scalar and,
therefore, can be evaluated in the rest frame of the fluid, where u*=
(1,0,0,0), using the Minkowski metric #,,,.

A simple calculation gives

TQ = pf<u5u +§—) — G _1)< K? (5;)2). (2.124)

f P
Now
v=u*, =&
and from é,6% = —1 it follows that v? > 1.
Therefore, TQu is positive definite provided that
k2- O (2.125)
f
Let ,
AP - 7 K*f (2.126)
Then

026 1 0*G LG
A=<—2+f )(5 )2 33T 372 OT). (2.127)
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From the convexity of — G one obtains

2
g%§<o. (2.128)
Therefore, A <0 iff
2 ZG 1 aZG 2
w5 )~ (o) =0 R
Now
. 9*G G [(#G\: 1 8°G
—ﬁﬁﬁ%%ﬁfﬁﬁf

0G 0G oG
_%ﬁﬁJ%L%ﬁ”>

D(T.p)  fo* D(T.p)

in terms of Jacobian determinants.
It follows that

*(57)
Aopn P2Tp) ] oT

= 129
p(26 26\ T e ey )
oT op oT op
because
0G 0G
D —,—
D(T,p)
from the convexity of — G.
A simple calculation then shows that
1 1
A=1-- . 2.130
op /s

However, from the first law of thermodynamics

de—fdp=pTdS

(5).().

op
A =1-(=— _
<6e>s (2.131)

one has

Finally,
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and, therefore, A” > 0 iff

(ﬂv <1 (2.132)
de /,

Therefore, the following conditions:

2
G
(i) convexity of — G, that is, Fr <0 and J>0;

(ii) causality, that is, <@> <1
de/
are sufficient to ensure that Qu is positive definite. Without loss of generality
we can take v = £, > 0 and Q will then be positive definite. The case when
¢o < 0 can be obtained by simply replacing h* with — h*,
It is interesting to remark that it is sufficient to assume only that

0*G
(@) a?<0,
(b) 0<<@> <l
de /

In fact, from (a) and (b) it follows that J>0, as can be derived
immediately from the thermodynamical identity

oG 66)

(‘3_”) _ _,,z<3V> __ D) _ 2D<$’a_r

ap ). " DS " Dps

(3 51)
. \0p°3T) D, T) _ _Jp?
D(p,T) D(,5) &G’
oT?
. . [ Oe dp

where V = 1/p and the relationship e =f a has been used.

Therefore, the theory of the previous section can be applied and the
system of equations of relativistic fluid dynamics can be written in a
symmetric conservative form

A4V UB =0, (2.133)

with
o
AraA —
B aurAa UrB
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and
W* = U/AFaA _ ha,

where a simple calculation shows that

Wt =2yt (2.134)

The symmetric form for the equations of relativistic fluid dynamics can
be useful both for theoretical analysis (existence theory, shock waves) and
for numerical computations.

In the next section we will obtain a similar formulation for relativistic
magneto-fluid dynamics. In this case, excluding the aforementioned
advantage, the most important result is that we obtain automatically a
hyperbolic system.

2.7. Main field for relativistic magneto-fluid dynamics

The fundamental equations of relativistic magneto-fluid dynamics have
been introduced in Section 2.4 and are

vV, T*# =0, (2.135)
V.(pu*) =0, (2.136)
V.4t =0, (2.137)
where
Yy = u*bf — ufbe. (2.138)

The energy-momentum tensor T*# is decomposed into a “fluid” part
T% and a “magnetic” part T2 given by
T% = (e + pyu*u® + pg**
and
T3f = |b|*(uw*u’ + g*%) — bb*.
It is well known that the Maxwell equation (2.137) contains a
“constraint” part and an “evolution” part. The constraint can be taken to be
F=§Vy“?=0 (2.139)
and the evolution equations we can take to be
F*=H4{V y* =0, (2.140)
with
HY = 6§ + £#&,.
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It is easy to prove that if F =0 holds on a hypersurface & transverse
to &%, then F =0 holds in a neighborhood of & as a consequence of the
“evolution” equations F* = 0. In fact, differentiating F* = 0 yields

VI =V VP + &V, V0 + V,(E*E)V i = 0,

whence
EV, F + (V,EMF =0,

which proves the statement.

Therefore, it would seem natural to replace, in the field equations,
equation (2.137) with its evolution part (2.140). However, by doing so we
lose the conservative nature of the field equations and the whole theory
developed in Section 2.5 would not be applicable.

However, the theory can be applied in the case where the timelike vector
field &* is hypersurface orthogonal, which occurs in most applications.

Then it is possible to introduce, at least locally, coordinates (x*) such that

&, =09
In these coordinates, equation (2.137) splits into
®=Vy®=0, (2.141)
O = V% + Vi =0. (2.142)

Then equation (2.141) is the constraint equation whereas equations (2.142)
are the evolution equations.
We can then take as field equations equations (2.135),(2.136), and (2.142).
By introducing the column vector

T
F*=| pu* |, (2.143)
l//ak
then the field equations can be written
V.F*=0 (2.144)
together with the constraint
Vy%=0 (2.145)

and the supplementary conservation law
V.h* =0, (2.146)
with
h* = — pSu®. (2.147)
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Since we are dealing with systems of conservation laws with constraints
the theory developed in Section 2.5 is not directly applicable but requires
a slight generalization. In this case it amounts to an obvious extension.
Ruggeri and Strumia (1981b) have tackled this problem but they did not
properly take into account the constraint (2.145).

The general case of an arbitrary system of conservation laws with
constraints has been treated, in a noncovariant framework, by Boillat
(1982a, b).

The compatibility relations arising from (2.144)—(2.146) are

wpdT + ¢ d(pu®) + A, dy*™ + kdy®* = d( — pSu®), (2.148)

where wg, ¥, 4; are the components of the main field U’ and k is the
multiplier for the constraint.
By contracting equation (2.148) with £, =(1,0,0, 0) we obtain

wi(T%) + y d(pu®) + 4;dy® = — d(pSu®). (2.149)
As in the previous section we have the following identity
T d(— pSu®) = uy, d(T8) + (G + 1) d(pu®)

and, therefore,

T d(— pSu®) = upd(T°) + (G + 1)d(pu®) — us d(TSP). (2.150)
It is easy to see that
up d(TYF) = — b, dy®,
hence
Td(— pSu®) = usd(T%) + (G + 1)d(pu®) + b;dy*". (2.151)
It follows that the main field U’ is given by

1| M
U==|6+1]|. 2.152)
Ty

Now we prove that h = h*é, = h° is a convex function of U’. By taking
as the field U = F*¢, = F° and proceeding as in the previous section this
amounts to proving that the quadratic form

Q = 6UsUA

is positive definite, for all variations 6U"4.
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Now,

Q=5<3‘74>5<T,?,0+T3">+5< - )5( °)+5< )w' (2.153)

Let Q, be the corresponding quadratic form for the fluid without a
magnetic field (|b| = 0). Then

Q=0,+ %(514,,573," + 6b, 0y, (2.154)

After some calculations we find that

TQ = TQ, + 20u®b,6b* — 2b°3u, 6b* + u®|b|*du,ou*
+ u®b,6b* + u®oby6b° + u°|b|?6udu,,

which can be rewritten in a covariant fashion as follows

T(Q — Q) = (u*€,) b1 updu® + (4, )5bs0bP + 2by(0uE,)ObP
— 2(b™¢,)ou,yob”.
This expression, being an invariant scalar, can be evaluated in the rest
frame (2.84).
It follows, after some calculations, that
T(Q — Q) = &oLIbI*(3u) + [bI*(6u?)? + (8b')? + (6b%)* + (6b°)*]
+ 2|b|£,0u?5b' — 2|b|E,6ub.
Under the assumption &, > 0 one finds that the eigenvalues of the matrix
of the quadratic form in the right-hand side of (2.155) are all nonnegative
and, therefore, that T(Q — Q) is semipositive definite. This, together with
the positive definiteness of Q, which can be proved as in the previous
section, completes the proof. The case £, < 0 can be dealt with by replacing
h* by — h*
Now we turn to the determination of the multiplier k.
From equation (2.148) and equation (2.152) we obtain
ugdT* + (G + 1)d(pu®) + b, dy* + kT dy®* = T d( — pSu®). (2.155)
Subtracting from (2.155) its expression for b* =0, db* = 0, yields
ugdT® + b, dy™ + kT dy®* =
which yields

bo
=——. 156
k T (2.156)
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Now, at variance with the previous sections, we take into account the
constraint by defining

W= U1F*4 4 k% — h*. (2.157)
Then, by using the compatibility relations (2.148), we have
on'® 5. 0k o
PR A
whence
A — oF4 o02h® 3 %k o — ok oy°e
B T oUB T oU4aUE  oU4oUB Ut ou'®

It follows that the field equations (2.144) can be written in the symmetric
form, as a consequence of equation (2.145),

‘:lBVa U,B = Oa (2158)
with
azh/a azk o
%p= - ” 2.159
AB aU/AaulB aU/AaU/B l/I ( )

Obviously, one has
oK

Wt =5paz0m

(2.160)

with
W=K¢,=U4U1—h.

From the well-known properties of the Legendre transformation, 4’ is
also a convex function of U’ and therefore det (.#%,¢&,) # 0. It follows
that both conditions for the hyperbolicity (Definition 2.1) are satisfied.

An interesting problem which remains to be solved is that of extending
the theory expounded in this section to the case when the timelike vector
&% is not hypersurface orthogonal. Such an extension would be required
in order to treat magnetohydrodynamic accretion onto a rotating black
hole.
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Singular hypersurfaces in space-time

3.0. Introduction

In the previous chapter we proved that, under suitable restrictions on the
state equation, the equations of nondissipative relativistic fluid dynamics
and magneto-fluid dynamics can be cast in the form of quasi-linear
hyperbolic systems. A distinguishing feature of hyperbolic systems is the
occurrence of nonsmooth solutions and in particular the generation of
discontinuities in initially smooth profiles (Jeffrey, 1976). The physical
interpretation of this phenomenon is that, in the absence of dissipation, the
nonlinearity of the field equations tends to steepen a given initial profile
until (if some conditions are met; Whitham, 1974) a discontinuity in some
derivative of the field variables (or in the fields themselves) appears.
Therefore, we must expect solutions with discontinuities to be a common
occurrence in relativistic fluid dynamics and magneto-fluid dynamics. Due
to the hyperbolic character of the equations the discontinuities will
propagate as surfaces, called singular surfaces. This chapter is devoted to
the study of propagating singular surfaces in a covariant framework. This
provides the groundwork for the investigation of weak discontinuity waves
in Chapter 4 and of shock waves in Chapters 8, 9, and 10.

A singular surface is a propagating surface across which the field
variables characterizing the medium, and their derivatives, suffer a jump
discontinuity (Truesdell and Toupin, 1960). When the fields themselves are
continuous but some of their derivatives are discontinuous, the surface is
called a weak discontinuity (or ordinary discontinuity) surface (Truesdell
and Toupin, 1960; Jeffrey, 1976).

A great merit of the concept of a singular surface is that it allows for a
mathematically exact treatment of the evolution of a given propagating
singular surface (at least in the case of a weak discontinuity), free of any
approximation. This topic will be treated in detail in the next chapter.

On the other side, one of the drawbacks of the concept of a singular
surface is that it is limited to impulsive waves (with time and length scales
very short compared to the other scales present in the physical problem
under consideration). Sometimes this idealization may be too extreme



58 Relativistic fluids and magneto-fluids

(particularly when the length scale of the impulsive wave is of order of some
mean free path in the material medium) and consequently the results must
be judged with great care.

In the theory of singular surfaces a key role is played by the geometric
and kinematic compatibility relations (Hadamard, 1903; Thomas, 1957,
Truesdell and Toupin, 1960; Chen, 1976; Kosinski; 1986).

Let us recall briefly the compatibility relations as they are expressed in
the framework of nonrelativistic continuum mechanics.

Let X, be a moving surface in the Euclidean space R3, described by the
parametric equation

x¥*=x'01), a=1,23 T'=12

where x* are Cartesian coordinates and v! are curvilinear coordinates on
z,.
Let ¥ be a function that is regularly discontinuous across Z, [i.e., such

that the limits ¥, = lim W(P) are finite and different, where ;¥ denotes
P—»Eti

the two orientations of Z,; a precise definition will be given in the next
section]. Then the geometric compatibility relations of first order are

(0¥ 511 = m[[¥,on* 1] + xp:a@™*[[¥ ] 1.r, (.1

where for any regularly discontinuous function [[f]]=f_— f+, m is
the unit normal to Z,, a'® is the induced metric on Z,, and the semicolon
denotes covariant differentiation with respect to the induced Riemannian
connection on X,.

Similarly, the kinematic compatibility relations of first order are

Wll-_ O ||, otvld
[l o

é
where V5 is the normal speed of displacement of X, and 5 denotes the

Thomas displacement derivative (Thomas, 1957), that is,

é=g+ Vzna a .
ot ot ox°

In a space-time formulation, as we shall see in the next section, the
geometric and kinematic compatibility relations can be considered as the
space and time components, respectively, of a single covariant compati-
bility relation, across a singular hypersurface X, representing the history of
¥, in space-time.
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In relativity the covariant compatibility relations have been obtained, in
a local form, by Maugin (1976) for a nonnull hypersurface.

The case of a null hypersurface is not encompassed by Maugin’s
treatment because the projection operator cannot be defined. However,
null hypersurfaces are very important in relativity as possible carriers of
electromagnetic and gravitational discontinuity waves.

In nonrelativistic continuum mechanics, an approach different from the
standard one, leading to the compatibility relations (3.1)—(3.2), is due to
Cattaneo (1978). This approach, suitably extended to a relativistic frame-
work, is capable of dealing with both null and nonnull hypersurfaces (Anile,
1982), and applies also to the space-time formulation of Newtonian physics.

The plan of the chapter is the following.

In Section 3.1, first we introduce the concept of the inner covariant
derivative for nonnull hypersurfaces. This is done covariantly in a local
form, that is, restricting oneself to local charts in the space-time manifold.
We follow a different route than Maugin’s in the sense that we do not use
parametric coordinates on the hypersurface X. The results are, however,
equivalent. Then we introduce the concept of the Thomas displacement
derivative, in a covariant way, for a nonnull hypersurface in an arbitrary
space-time.

Also, we recall some basic concepts from distribution theory, define the
Dirac distribution for a nonnull hypersurface, and prove some basic results
for the derivatives of regularly discontinuous tensor fields.

Following the method of Cattanco (1978) we introduce a definition of
inner covariant derivative which is appropriate for null hypersurfaces and
we obtain the relevant compatibility relations.

Finally, following Friedlander (1975), we give a definition of the Dirac
distribution for a hypersurface which applies also in the null case and
obtain some basic formulas for the derivatives of regularly discontinuous
tensor fields.

3.1. Regularly discontinuous tensor fields across a hypersurface
Let .# be a space-time, Q < .# an open subset of .#, and ¢p:Q—->R a
differentiable function. The equation
P(x)=0 (3.3)
will define a hypersurface X in Q.
First of all, we shall assume that X is a nonnull hypersurface, that is,
90 40,5 #0.
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Then the unit normal to X can be defined by

_ P
9% 40 411 (3:4)

My

with n,n* = + 1 according to whether X is timelike or spacelike.
The projection tensor h*” onto X is
by =8, Fn,n. (3.5)
Let v*(x*) be a smooth vector field of Q defined on Z; then we define the

inner covariant derivative of v*(x*) by

Vvt = hev om. (3.6)

Remark 1. This operation represents a directional derivative along direc-
tions lying on the hypersurface . It is to be distinguished from the induced
derivative, defined for vector fields which are tangent to X,

"V o* = h2haV, 0P, (3.7)

where the result of the inner covariant derivative is further projected onto X,
in order to obtain a tensor which is tangent to . Obviously, for scalars, V
and "V coincide.

Remark 2. The definition (3.6) can easily be extended, by linearity, to
arbitrary tensor fields. The extension to a field U consisting of tensor fields
is straightforward.

Remark 3. When v* is defined only on points of Z, the definition (3.6) still
makes sense. In fact, let us consider local coordinates adapted to X, that is,
y° = ¢(x*) and y are three coordinates on Z, and let ##( y*) be any smooth
extension of v* off . Then

V0% = heV,0* = he{9,0" + T%0° ). (3.8)
Now, in the coordinates (%),
h20,0" = h00,6* + k" = ko

because Tz‘v’ = 0 in these coordinates.

Therefore, V,v* does not depend on the particular extension 9%,

Now we introduce the regularly discontinuous tensor fields and the
compatibility relations.

DEFINITION 3.1.  Let (y°, ') be coordinates adapted to Z, y° = ¢(x?), y' are
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three coordinates on X. Then a smooth tensor field T} on Q-X will be said to
be regularly discontinuous across T if there exist two tensor fields T% which
are smooth in the domains Q, = {(y°,y),y° > 0}, Q_ = {(3°,'), y° < 0} and

0 0
such that in the open subdomains Q. = {()°,y"), y° >0}, Q_ = {(y°,)),
¥° <0} coincide with T§:.
The jump of T across T is defined as
[LT5:0011= T4, 0.9 — T4, 0.y,
The jump [[T]] is a tensor field on £ and we can apply to it the inner

covariant derivative.

Obviously the jumps [[V,T5::1] are not all independent because, for
derivatives along X, the jump and derivative operations commute. This can
be made precise by the first order compatibility relations, which, in the case
where X 1s nonnull, are

[V, T5:11=Y,[[T5:1]+n, L[V, T5:1] (3.9

In order to prove equation (3.9) it is sufficient to consider only vector
fields. The extension to tensor fields by linearity is trivial.
Let (y°, y') be coordinates adapted to X, then

¢, =(1,0,0,0), g*p,0,=g°%° #0,

_ 1 a_ rooo; 9%
na_ |g00|(1505050)s n —<i\ |g |a\/gw .

Equation (3.9), in these coordinates, reads
[[Vp*]]=V,[[v*1] =R}V, [[+*]]= V,[[+*1],

which holds because )’ are coordinates on X, and

[[Vor*11= Vo[ [v*]] + [[n*V,*]1],

1
V1%
which holds because

- giO
Vol[v*]]=— 0% V.[[»"]11

For a field U consisting of tensor fields which are regularly discontinuous
across a nonnull hypersurface I, the first order compatibility relations will
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obviously be
[[V,U]]=V,[[Ull+n[[V, U] (3.10)

where V,U=n"V U.
By iteration one can obtain compatibility relations of higher order for the
jump [[V,,V., V., Ull
As an example we shall derive the second order compatibility relations.
We shall prove them for vector fields. The extension to a field U consisting
of tensor fields is straightforward.
Let v* be a vector field which is regularly discontinuous across X. By
applying (3.9) to V,v* we have
[LVpVor* 11 = ViV [[0¥1] + xep[ [Var*]]
+n,V,[[Voo* 1]+ n[ [0V, V011, (3.11)
where
Yap = Vpna=V,n, (3.12)

is the second fundamental form of X.
Now, a well-known result of differential geometry is that (Misner et al.,
1973)

V,V 0" — V,Vv* = Rbp0°%, (3.13)
where R}, ; is the Riemann tensor of the Riemannian connection. Therefore,
from equations (3.11)—(3.13) it follows that

[[V.V0*1]+ Rég[[°11= VsV, [ [0*]] + xp[[Var*1]
+n,V5[[V,0*1] + ny[[n°V, V,0#1]. (3.14)
It is easy to see that, for an arbitrary vector field w*, one has

jﬁl,w“ — ﬁlﬁaw“ = ngfzf,R“ wh — n,,xa’ﬁpw“ + naxﬁﬁpw“. (3.19)

apt
From the previous two equations it follows that
[[V,V,0*1]+ R¥,[[v"1]1 =V, V,[[v*]1] - hehsRE, [ [v°]]
+ ngxtV, [ [v*1] — nxsV [ [v*]]
+ Aap[ [Va0"1] + 1, V5[ [V0*]]
+ ng[[n*V,V,0*1]. (3.16)
By contracting equation (3.16) with n* we obtain
[[n°V,V,0*1]1= — n*R:, [[v"1]— 22V, [[v*11 + V,[[V,0*]]
+ na[[ninvvvvlvu]]a
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which after substitution into equation (3.11) yields

[[V,Va0*11= VsV, [[0*]1]+ xep[[Var*1] + 1V, [ [V,04]]
+ 1V [V 11— ngxeV,[[v*]]
+ nng[ [n*n'V, V0] — ngn*RE, [ [v°]]. (3.17)

Equations (3.17) are the second order compatibility relations for a
regularly discontinuous vector field.

In order to treat the case of a field U consisting of tensor fields it is
convenient to introduce a matrix R,; with components (R,;)5, A,B
=1,2,...,N, such that the commutation relations (3.13) are suitably
generalized (Pham Mau Quam, 1969), giving

VaVﬂUB_ VﬂVaUB:(Raﬂ)ﬁ UA. (318)

Then the second order compatibility relations for a regularly discontinuous
field U are

[[V,V.U11=V,V,[[U1]+ 14 [ [V.UI1 + 1.V, [[V,U]]
+ 1V [[V Ul = ngy2V,[[U]]

+ nan,,[[n‘an,leU]] —ngn'R,,[[U]]. (3.19)

Now we shall introduce the concept of the Thomas displacement
derivative.

Let us consider first the case of Minkowski space .# = R* with the metric,
in inertial coordinates (¢, x), given by

gMV = ”uv = dlag(_ 15 la la 1)

and let f be a function which is regularly discontinuous across X, assumed
to be a timelike hypersurface.
The first order compatibility relations are then

[[0,f11="Y,[[f1]+n,[[n"3,f1]. (3.20)

The normal speed of propagation of X with respect to the family of
inertial observers, having

u“ = (1’0’ 0’ 0)’
is given by
Velg = —n,, (3.21)

where 'y = (1 — V2)'/2 is the Lorentz factor of V.
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Then, from the normalization condition n,n* = 1, we have
n,=TIgv,
where v,v; =1, v; is a unit three-vector in Euclidean R3. Hence
n,=(—TgVg,Tevy), n*=Tg(Vg,w), (3.22)
and the components of the projection tensor h* = o4—n,n" are
§=T%, Ry =T§Vev,,
V]

8| —T2v, B =—TZVy,

= S

Then the compatibility relations (3.20) for & =0 yield
[[60f11=2[[f1]1— Vel [v'd.f]], (3.23)

where
D=0,+ Vg0, (3.24)

can then be interpreted as the Thomas displacement derivative, because
(3.23) are the standard three dimensional kinematic compatibility relations
(3.2).

Similarly, for « = i we obtain, after some manipulations,

[[0:f11=m{0,[[ 11+ v,[[vd;f1] (3.25)

with 7/ = 8/ — v;»/ the projection tensor onto the 2-surface of R* given by
Z N (t =const.). Equations (3.25) are the standard three dimensional geo-
metric compatibility relations, equations (3.1).

A covariant definition of the Thomas displacement derivative can be
obtained in an arbitrary space-time as follows. Let  be timelike with unit
normal n*.

Let u* be a timelike vector field, u,u* = — 1, and introduce the following
vectors
k* 1 u "
= r—}:(u + r}: V}:n ), (326)
L1
q" = (7 = TsVsu?), (3.27)
z

where Vg is the normal speed of propagation of X with respect to u*, n*u, =
— T Vs

We have k*n, =0, k*k,= —1, q¢"u,=0, and g*q,=1. Then k* is a
timelike unit vector on X and g* a spacelike unit vector in the 3-space
orthogonal to u*.
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The compatibility relations (3.8), contracted with u*, yield
[[wV,T5:11=wV,[[T5:11— ViT:[[#*V, T5:1],
which are equivalent to
[[wV, Ty 11=2[[Tp: 11— Vsll[g*V,Tj:: 11, (3.28)

where
[T} ]]— k“V LLLT5 1] (3-29)

Equations (3.28) are a covariant formulation of the kinematic compati-
bility relations with respect to the timelike vector field u*, and therefore 2
can be interpreted as the Thomas displacement derivative.

Some properties of the Thomas derivative of the vector field k* are of
noticeable interest and will be useful in what follows.

Obviously, 2k* is orthogonal to k*. Furthermore, let e4,e5 be two
spacelike unit vector fields, defined on X, mutually orthogonal and
orthogonal to k* and g*. Then the following formula holds:

e Dk, = — Vel V Vi + En*(Vau, — V,u,)

© ©

Vs
rz
1

r3e,,uav u, A=23. (3.30)

In fact, one has

1 1 1
eﬁ@ku = r—xeﬁkavaku = r—zeﬁk“<r—xvauu + V}:Vanu>

1 V;
FZ =5 e4k*Vu, + rz e kv n,

1
:Feﬁuav u V}:r}:eAV V}:
z

V.
+ —=ehn®(V,u, — V,u,).
I's

In many applications one has to differentiate tensor fields which are
regularly discontinuous across the hypersurface £. The mathematically
sound way of doing this is through the use of distribution theory. Here we
shall present some of the basic results which will be of use later.
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First of all, we recall some basic results for distributions on a manifold
(Friedlander, 1975).

DEFINITION 3.2. Let Q be an open subset of R" and C§ () denote the space
of C® functions on Q with compact support.

Let u:C3 (Q)— R be a linear form on C3 (Q). Then u is said to be a distri-
bution on Q if, for any compact K < Q, there exist two constants Cg, N,
such that

w,®)<Cx Y suplo*d®l, (3.31)

laf < Nk

YO (Q) with supp @ < K, and where (u, §) denotes the value of the form
u on the function ¢.

Remark 4. 1f f is locally integrable in Q, feLl (Q), then f defines in a
natural way a distribution f on Q by

(f,d>)=J f®dx, (3.32)
Q

VOeCy(Q), with dx the Lebesgue measure in R™

In fact, (3.31) is verified with Ny = 0 and Cg = [o|f|dx. The vector space
of distributions on Q is denoted by 2'(Q).

Now let .# be a space-time, and Q be an open subset of /.

DEFINITION 3.3.  Let u:C3(Q)— R be a linear form. Then u is said to be a
distribution if in any local coordinates (x*), ranging in an open subset ' of R"
there exists a distribution ' on Q' such that

(u, @) = (', D(x*)| g(x*)| ')
Jfor any differentiable function ® with compact support in Q, with g = det(g,,,).

The vector space of distributions on Q is denoted by 2'(Q).
Let 2,(2) denote the vector space of differentiable tensor fields with
compact support.

DEFINITION 3.4. Let T: 94,(Q)— R be a linear form. Then T is said to be a
tensor distribution of type (r,s) if, in any local coordinates (x*) ranging in an
open subset Q' of R", there exist w** distributions T§j3 ;% on Q such that

(T @)= (T35 f, PULLE & () g(x*)'?)
Jor any ®e D (Q).
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The vector space of tensor distributions of type (r, s) is denoted by 2.

Let T be a tensor field of type (r, s) defined in a bounded domain Q of .#,
which is locally integrable, that is, such that in any local coordinates its
components T5155 "%, are integrable.

Then T defines a tensor distribution T of type (r, s) by
T:25,(Q)-R,
<oy = [ mnet (339
Q
where p is the invariant volume element of #,

u=./1g/dx® A dx! A dx? A dx>

in local coordinates.
The covariant derivative of a tensor distribution is defined as follows.

DEFINITION 3.5. Let Te 9. Then the covariant derivative VT is the tensor
distribution of type (r,s + 1), VTe2y + 1 such that

(VT,®)=(T,6®), VO3 ', (3.34)
where

@@ 5= —V, @5 (3.35)

Now we introduce some important distributions which will be of use
later.

Let ¢:Q — R be a differentiable function and X be the hypersurface of Q

defined by ¢(x*)=0.
LetQ, =(xeQ:¢(x) > 0),Q_ =(xeQ: ¢(x) <0)and let y, and x_ be the

characteristic functions of foli. Obviously, y. are locally integrable and
they define two distributions, also denoted by y. .

Let =, denote the hypersurface = with positive orientation and »* its
outward unit normal. We define the Dirac distribution J; relative to X by

(5. f) =J flzptss (3.36)

where 5 is the induced volume element of Z, feCg(Q).
It is easy to show that

Voxs = F n,ds. (3.37)
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In fact, for any smooth vector field f* with compact support in Q, one has

(Vat s S5 = — (14, Vo) = — J 3(f*/1g1)dx°dx dx2dx?

Q

_J Ofana#}: = _J fana#}: = - (naé}:’ fa)‘
aQ p

The induced volume element ps, because X is nonnull, is defined as
follows. In local coordinates (y°, y’) adapted to X, such that y° = ¢(x*), y'
are three coordinates on X having the same orientation as (x%),

ps=+/1g1dy*dy*dy?,
with §;; the induced metric tensor on Z. When X is null the definition of
requires more care (Friedlander, 1975).
Now, let T§::- be a tensor field in Q, regularly discontinuous across X,
and T‘Zﬂ_;;,'.__ be the two tensor fields introduced in Definition 3.2. Then T
defines a tensor distribution in Q. In fact, let

Ta =0 Ty +x-T%y ., (3.38)

where x, represent the distributions associated with the characteristic
functions. By using equation (3.37) we obtain

V1% =n,[[T%:110: +(V,T%"), (3.39)

where (V,T%:::) denotes the tensor distribution defined by the regularly
discontinuous tensor field V, T%:::.

The case when the hypersurface X is null requires special care because
of the following two points:

(i) the definition (3.6) of inner covariant derivative does not apply since the
projection tensor ﬁ; is not defined;

(ii) the definition of the Dirac distribution dy, equation (3.36), and hence also
equation (3.37), must be changed because of the nonexistence of the unit
normal.

In order to treat null hypersurfaces we utilize a method originally
introduced by Cattaneo (1978) in a noncovariant framework, suitably
modified to make it covariant. First of all, we assume that space-time .# (or
an open connected subset Q of it) is time-orientable, that is, there exists a
smooth unit timelike vector field &% Let ¢:Q—R be a differentiable
function and consider the hypersurface X given by

d(x*)=0.
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Let I,=V,¢ and assume that X is null, that is,
,=0.

We notice that [{, #0. In fact, at a given space-time point we can always
use inertial coordinates such that &= (1,0,0,0) and the metric has the
Minkowski form #,,. Then

LEr=1,#0
because
LIF=— 2+1F=0.

Let v*(x*) be a smooth vector field of Q defined on X. We define the inner
covariant derivative of v* by

Ly

Vof =V,of —
(1.")

EV P (3.40)
Notice that
eV =0
and also that if w” is tangent to X, that is, w*l, =0, then
weV 0f = weV 0.

The above definition can be extended in a trivial way to a tensor field. A
coordinate-free formulation can be obtained very easily (Anile, 1982).

Proceeding as before, we obtain the compatibility relations in the case of
a null hypersurface. They are

[[V,0f1]=V,[[v" 1]+ L[[n'V,0"]], (3.41)
where
v &
~pe

and can easily be extended to tensor fields.

The definition of the Dirac distribution d; must be modified when X is
null because the induced volume element cannot be defined. Instead one
utilizes the Leray form p;y defined by the requirement

p=d¢ Appy, (3.42)

where
u=./lg|ldx® Adx* Adx?Adx®

is the space-time volume four-form (Friedlander, 1975). Then the definition
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of oz becomes

(s, f) = L Sy (3.43)

and equation (3.37) is modified to
Vaxi = 1 laé}:. (344)

Accordingly, equation (3.39) is modified to

V. T3 = LT 118: +(V, T30, (3.49)
Notice that the Leray form is well defined for any kind of hypersurface
(whether X is null or nonnull) and hence equation (3.45) holds for any kind
of hypersurface.
In the next chapter we will apply the method expounded in this section to
the study of the propagation of weak discontinuity waves.



4

Propagation of weak discontinuities

4.0. Introduction

In the previous chapter we introduced the concept of propagating singular
surfaces (or singular hypersurfaces in space-time) and derived the compati-
bility relations among the jumps of the field variables. When only
derivatives of the field variables can be discontinuous across a propagating
singular surface, we are dealing with weak discontinuities. When the fields
themselves can be discontinuous we have strong discontinuities (among
which shock waves are of paramount importance).

Whereas shock waves can be produced from an initially smooth solution
as a consequence of nonlinear steepening and breaking, weak discontinu-
ities can only be produced as a result of discontinuities in initial or
boundary conditions. For instance, in gas dynamics, a jump in the
derivatives of the velocity can appear in a flow along a solid obstacle with
angles. Also, a jump in the derivatives of‘the pressure can appear (among
other discontinuities like shocks and contact discontinuities) when the
initial condition consists of two adjoining masses of gas compressed to
different pressures (Landau and Lifshitz, 1959a). Although conceptually
these two examples remain valid also for relativistic fluid motion, for
relativistic flow in an astrophysical context only the latter is meaningful.
For instance, the case of a cloud moving relativistically in a jet has been
considered by Blandford and K&nigl (1979) in the context of models for the
rapid variations in extragalactic radio sources’ emissions.

An extremely important application of the concept of weak discontinuity
waves is to the study of impulsive gravitational waves. In fact, the
geometrical quantities corresponding to the physical degrees of freedom of
the gravitational field are not the metric components or the Christoffel
symbols but the Riemann tensor components (Misner, et al., 1973).
Therefore a gravitational impulse could be modeled as a space-time where
the metric and the Christoffel symbols are continuous but the second
derivatives of the metric (and hence the Riemann tensor) are discontinuous
across a hypersurface (Synge, 1960). In this case, by using the theory of weak
discontinuities, one can prove that gravitational impulses propagate as
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waves with the speed of light and one can also define a local energy
conservation for these waves, thereby providing an invariant definition of
gravitational radiation, at least in this limiting case (Pirani, 1957).

Once they have been produced by given initial and boundary conditions,
the propagation of weak discontinuities can be studied relatively easily (at
variance with shock waves).

The evolution of a weak discontinuity can be studied exactly because, in
some sense, its motion decouples from that of the smooth part of the
solution. In fact, the motion of the wave separates from the solution behind
the wavefront and its evolution can be determined, once the state ahead of
the wavefront has been specified and the initial data for the wave
parameters have been assigned. More precisely, one introduces a class of
curves (rays), and the problem of determining the evolution of the wave is
reduced to that of solving: (i) a partial differential equation (which is the
characteristic equation); (ii) transport equations for the wave parameters
(amplitude and polarization) along the rays (the transport equations are
in the form of systems of ordinary differential equations of the Bernoulli
type).

The theory of weak discontinuities in the context of Newtonian physics is
rather old (Hadamard, 1903; Thomas, 1957; Truesdell and Toupin, 1960;
Chen, 1976). In the past it has been applied mainly to fluid dynamics and
elasticity theory (Truesdell and Toupin, 1960; Chen, 1976). An elegant and
concise presentation of the theory, in a form suitable for general hyperbolic
systems, has been given by Boillat (1965).

In a relativistic framework the propagation of weak discontinuities has
been studied by several authors (Boillat, 1969, 1973; Cattaneo, 1970; Saini,
1976; Giambo’, 1982, among others), and the theory can be presented in a
concise and fully covariant formulation.

The theory of the propagation of weak discontinuities has the very
interesting feature that it allows an exact analytical treatment of the
phenomenon of nonlinear breaking of impulsive waves. Furthermore, this
theory can be of great relevance also in connection with the testing of
elaborate numerical codes for relativistic fluid dynamics and magneto-fluid
dynamics (for instance in the context of accretion onto black holes; Hawley,
Smarr, and Wilson, 1984a,b). In fact, numerical codes based on finite
differencing have great difficulty in coping with discontinuities because they
tend to be ignored or smeared out in a nonphysical way. Therefore, exact
analytical results for the propagation of weak discontinuities could provide
a benchmark against which to check various differencing methods.
Discontinuities can be dealt with relatively easily by the method of
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characteristics (which however is applicable only in one space dimension;
Whitham, 1974).

The plan of the chapter is the following.

In Section 4.1 we review the fundamental theory of characteristic
surfaces and bicharacteristic curves. The treatment is modeled after that of
Choquet-Bruhat (1968) and of Cattaneo (1981). In Section 4.2 we give a
covariant formulation of the theory of weak discontinuities for general
hyperbolic systems. In particular, we derive the transport equation, discuss
the breaking of the discontinuity wave, and give a covariant formulation of
the exceptionality condition. We follow the treatments of Boillat (1973),
Cattaneo (1981), and Giambo’ (1982). In Section 4.3 we treat in detail weak
discontinuities in relativistic fluid dynamics. In particular the transport
equation is derived explicitly and the exceptionality condition is analyzed
following the work of Boillat (1973). In Section 4.4 we discuss weak
discontinuities in relativistic magneto-fluid dynamics. We focus on the
exceptionality condition for magnetoacoustic and Alfvén waves, following
the work of Greco (1972). In Section 4.5 we discuss electromagnetic and
gravitational discontinuities, following the work of Lichnerowicz (1960).
We derive transport equations and conservation laws both in the
electromagnetic and in the gravitational case.

4.1. Characteristic hypersurfaces

We recall some basic definitions and results.
Let us consider the quasi-linear hyperbolic system

AV U = f4 (4.1)

with A%, f4 differentiable functions of UeD < RN,

Let X be a hypersurface, and (°, y') be local coordinates adapted to X, in
which the local equation defining X is y° = 0 and y* are three coordinates on
X. Then we can state the following definition.

DEFINITION 4.1. X is called a characteristic hypersurface for the system (4.1)
if, in local coordinates adapted to T, 0,U* cannot be expressed in terms of
o, U4,

We have the following proposition.

PROPOSITION 4.1.  Let T be a characteristic hypersurface for the system (4.1)
and let ¢(x*)=0 be the local equation of X.
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Then ¢ satisfies the characteristic equation

det (A%1,) = 0. 4.2)

Proof. In local coordinates adapted to X equation (4.1) reads
A%A 60 UB + A%Aa,- UB + YA = fA,

where Y4 does not depend on the derivatives d,U4. Therefore d,U4 cannot
be expressed as a function of 9;U4 iff det(4%*) =0, a condition which in
general coordinates coincides with equation (4.2). Q.E.D.

Now we shall study the characteristic equation (4.2). We shall limit
ourselves to local considerations and therefore work in R". We write
equation (4.2) as

Y(x%¢,)=0, x*eR" 4.3)

where W is homogeneous of degree N in ¢,.
The Cauchy problem for equation (4.3) can be formulated as follows. Let
W,_, be a submanifold of dimension n—1 of R"~?, and

f: Wn—l_’Rn+1

be an immersion, that is, a map which in local coordinates can be expressed
as

U)— fu) = <x“(ui), g(u')), a=1,...,n, i=1,...,n—1, (44

0o

where (1) are local coordinates in W,_,, and (x z) are in R**! and such
that the Jacobian matrix has rank n— 1 (Choquet-Bruhat, 1968). The
Cauchy problem is to find a differentiable function ¢(x*) such that it
satisfies (4.3) and, furthermore,

[ [

¢<x“(u")> = z(u). 4.5)

Let p, = ¢, and introduce coordinates (x° z, p,) in R2"*1,
Then equation (4.3) is equivalent to the following exterior differential
system in R2"+1,

\P(xaa pa) = Oa (46)
w=dz—p,dx*=0. 4.7

An integral manifold of the differential system (4.6)—(4.7) is defined as
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follows. Let W,, be a manifold of dimension m,
o:W,->R»"*1
a differentiable map given in local coordinates by
(W) = (x* (W), z(w"), p(w?)),

where (w?®) are local coordinates in W,,. Then the couple (W, 0) is an
integral manifold of the system (4.6)—(4.7) if:

(i) ¥(a(p))=0,VpeW,;
(i) o*w(p)=0

[where o* denotes the pull-back operator (Choquet-Bruhat, 1968) 7, which
in local coordinates read

1) W), p(wh)=0;
ox*

=0.
o’

N
() o = pw)

Now we construct the initial integral manifold of the system (4.6)—(4.7).
Let W,_, be asubmanifold of R"~! of dimensionn — land f: W,_, - R"*!
the previously defined immersion, equation (4.4). Define the differentiable
map

fiW,_ »RHL (4.8)

where %c“(u"), g(u‘) are given by equation (4.4) and p,(u’) are obtained by
V]

solving the system

‘P<x“(ui), Pa(u’)> =0, (4.9)
Y 0

0z ox*

G B3 =0 @1

This system has solutions for p,(u’) provided the Jacobian A is
V]
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nonvanishing, where

- )
% %
ou' dul

A =det
Jdx? ax"
L _°
aun—l aun—l
v ow
PRt 5
A

Now, since f is an immersion, rank (6§“/6u") =n—1. Then A#0
provided the derivatives 0W/dp, do not vanish simultaneously. Henceforth
V]

we shall assume the latter condition to hold, and in this case W, _, is said to
be not Cauchy-characteristic. In general, ¥(x% p,) is nonlinear in p, and
therefore the system (4.9)—(4.10) will have several solutions which will
correspond to different initial integral manifolds. Now we can state the
following theorem.

THEOREM 4.1. If W, _ is not Cauchy-characteristic, there exists an integral
manifold W, of the exterior differential system (4.6)—(4.7), passing through
W, -1, to which there corresponds a local solution of the Cauchy problem for
equation (4.3).

Proof. We consider the characteristic system associated with the exterior
differential system (4.6)—(4.7), that is,
dx* 0¥ dp, 0¥

dv dp, dv x*’

dz
3= Y 4
a0 (4.11)
whose general integral can be written as
X% = x* <v, x*(u'), z(u), p”(ui)>,
V] V] 0
Pu= P, (v, x*(u'), (), p”(u")>, (4.12)
V] V] 0
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where

are the initial data for v =0.
Let W, = W,_, x R, and introduce local coordinates («,v) in W,. Then
we define the differentiable map

F:WnﬁR2n+1,

with F given in local coordinates by equation (4.12).

Obviously, for v =0, W, and W, _ are diffeomorphic. Now we show that
the couple (W, F)is an integral manifold of (4.6)—(4.7). First of all, we show
that

¥(x*, p,) =0,
where x% p, are given by (4.12). In fact, from (4.11) we have

d¥

w0

hence
Y(x% p,) = ‘P<x“, pa> =0.
L)

Then, from (4.11), we have

0z ax* ik 4

%_”“a_u: —Paaz —-N¥=0

because W is homogeneous of degree N. It remains to be shown that

0 o
ou Pegi
Let
o o
Tk odte
Then

OH _ 0p,0x* Px* _dPaxt  *x
0 ovod Povod oxtod Provow
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a

But from pa%i =0 it follows that
v

0p,0x* 0*x°

3 oo T Paian

hence

OH_a¥ox a¥ap, 0¥ _

dv  0x*0u’  dp,ou ou
Therefore,

ag ax*
H=H,=_°_, 0 _
V] au, gaaui 0.

A solution to the Cauchy problem can be obtained from (4.12) by

inverting u* = u'(x*) and substituting into g(u"), that is,
$(x*) = g(“i(x“))-

This is possible in a neighborhood of the initial manifold, which
corresponds to v =0 because the Jacobian of the transformation

(', v) - (x%)
is
[ Ox! ox" |
ou? out
det | 9x! ix" |
PR P
Jdx? ox"
| Ov ov |

which, for v =0, coincides with A. Q.E.D.

Let W,_, be a submanifold of R” of dimension n— 1.
It is easy to find the characteristic hypersurfaces  such that

W, =46,

where ¢ is a preassigned n—2-submanifold of R" which is also a submanifold
of W,_, (Fig. 4.1).
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In fact, let (u') be local coordinates in W,_; and let

g(u )=0
be the local equation of 6 in W, _ ;.

Then, provided that W,_, is not Cauchy-characteristic, to the several
solutions of (4.9)—(4.10) there correspond different characteristic hypersur-
faces with local equations ¢(x*) = 0 constructed according to the previous
theorem, such that on W,_; one has

B (u)) = 2.

The construction of solutions of the eikonal equation will be a crucial
ingredient in the study of the propagation of weak discontinuities and also
in the theory of asymptotic waves. In the next section we shall derive a set of
propagation equations for the amplitudes of weak discontinuity waves
along the bicharacteristics. Therefore, it will be assumed that, for the
problem under consideration, the relevant solutions of the characteristic
equation have been found using the results of this section.

Fig. 4.1. Initial value problem for the characteristic equation in space-time. X is the
characteristic manifold (simple root) which on the initial manifold W, _, coincides
with é.
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4.2. Weak discontinuities

Weak discontinuities are a mathematical idealization modeling impulsive
waves. A precise definition is as follows.

DEFINITION 4.2. The field U is said to have a weak discontinuity
of order m across the hypersurface ¥ if [[U]]=0, [[V,U]]=
0,...,[[Va1+ Vum—1U11=0, but, ingeneral, [[V,; - V,sU1] #0,and U is
differentiable elsewhere.

Here we shall consider weak discontinuities of order 1, that is,

[[U11=0,
but, in general, [[V,U]] #0.
Then the compatibility relations (3.9) and (3.41) reduce to
[[V,U41]=Z"n, 4.13)
or
[[V,U41]1= 24, 4.14)

according to whether X is nonnull or null, with, obviously, a different
meaning for Z4. Now let us consider the following quasi-linear system

AV, UP = 4, (4.15)
with A%4(UC), £4(U°) differentiable functions of UeD = R™. Then
[[f41]1=0 (4.16)
and
[[4%4V,UP]] = 0. 4.17)
Let
o(x*)=0 (4.18)

be the local equation of . Then, by using the compatibility relations (4.13)-
(4.14), it follows that

A p.ZB =0 (4.19)

in both cases (null or nonnull).
Therefore, in order to have a nonvanishing jump, Z # 0, it is necessary for
¢ to obey

det(A%'¢,) =0, (4.20)

which is the characteristic equation for the system (4.15).
We remark that equations (4.19)—(4.20) hold on X.
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In the following we shall restrict ourselves to the case when X is timelike.
The case of  null will be treated separately.

For the equations of relativistic fluid dynamics and magneto-fluid
dynamics the case of X null corresponds to a particular limiting equation of
state (the extreme stiff fluid, for which the speed of sound coincides with the
speed of light). The results pertaining to the propagation of weak
discontinuities in this case can be easily obtained from those presented in
this section by a simple limiting procedure. As we shall see, for electromag-
netic and gravitational discontinuities X is null and such a case will be
treated separately in Section 4.5.

First of all, we consider the case when ¢(x*) = 0 corresponds to a simple
root of the characteristic equation (4.20).

Let

R=(RY", L=(L,

be the right and left eigenvectors of the matrix A*4 ¢, defined up to a factor,
corresponding to the zero eigenvalue,

A% ¢,RE=0, L,A%'¢$,=0. 4.21)
Then, from (4.19), we obtain
ZA =TI(x*)R4, (x")eX, 4.22)

where the scalar II is called the amplitude of the discontinuity. By
differentiating the system (4.15), we obtain

AFV,V,UB + A5V, U)(V,UB) = fEV,US, (4.23)
where we have put
aAaA afA
AaA A __ .
5= =7 (4.24)

By taking the jumps of equation (4.23) across ~ and using the second
order compatibility relations (3.19), we obtain
A (1.Z° + n(ﬁﬂZB + n,ﬁaZB + nngWP)
A%(naZB(Vp U, + nﬂZC(VaUB)+ + naanBZC) - fganB =0, |
4.25

which holds on X and where (), signifies that the quantity within
parentheses is evaluated on X, .
By contracting with n#, and multiplying by L, equation (4.25) yields

K*V,I1+ NIT? + MI1=0, (4.26)
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where
K*=L,A%R5, 4.27)
N = L, A%n RERC, (4.28)
M =L ,(A%V,R® — fARP + A%inn’RE(V,U),
+ A%ARE(V,UB),). (4.29)
It is easy to see that
K*n,=0 onZX

and therefore K* is tangent to X, hence
K*V,= K*V,.
By contracting equation (4.25) with 71;, where
715 = 5‘,} — ngn,

yields
A%'RBy,, + A%'n,V,RE + A%n, RE(V,UC), =0.

This latter equation is an identity and follows from the equality
A%'n,RE=0

by differentiating along Z.
A geometrical interpretation of the various terms appearing in
equation (4.26) can be obtained with the help of the following propositions.

PROPOSITION 4.2. Let A= det(A%'¢,). Then, on X, one has
K*=k_— (4.30)
with k a normalization factor.

Proof. Let C4 = A%¢, and denote by C5 the adjoint of C3,
CACB =54A.

On X we have A = 0 and therefore C5 is proportional both to RE and to
L,

CB—aREL,,

with a # 0 (otherwise C& = 0 and the solution ¢ = 0 would not correspond
to a simple root of the characteristic equation).
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Now, from the law for the derivation of a determinant,

j‘fa aia( 49,)Ch = A5 Ch = aL A% R,
it follows that
e k%’ k= % QE.D.
PROPOSITION 4.3.  On X one has
T LERC 4.31)

J1619U¢

with G=g""¢,¢,.

Proof.

hence

N = A%n RERCL , = Q.ED.

Until now we have not assumed that the system (4.15) is hyperbolic. The
only assumption we have made is that the hypersurface X corresponds to a
solution of the characteristic equation of the system. In the case of a
hyperbolic system we can obtain a suggestive expression for M. For this we
need a few propositions.

PROPOSITION 4.4. Let us consider the hyperbolic system
AF(U)V, U = f4(U).
Then the right and left eigenvectors R L belonging to the eigenvalues u,
(¢4}

i, obey
(&)

Gf L,RE=0,
(J) [¢4]

for I #J, with Gg = AE,.

Proof. An arbitrary ¢, (¢ not a solution of the characteristic equation, in
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general) can always be decomposed as
¢a = Ca - ﬂéa'
Now R and pu satisfy

[¢}] &
AxA — =0.
<C (I]L)é >U)

[there is no summation over (I)]. Then
AF(,— né)R® = (# #)A““‘é RE = (#— #)G“‘RB
(¢4] 115 115 (¢4]

Similarly,

(%A%A(Ca —pé) = — ( > L,Gj.

)

From these two equations it follows that

GAL,RE=0, forlI#J. Q.ED.
B
Corollary.
k= GiL,RE#0.
0 B

Proof. In fact, since det (Gf) # 0, the vectors Gﬁ(%,, are linearly independ-

ent and span R", for I =1,..., N. Therefore, (l’!) # 0 implies Gg‘(%A(I’()B #0.

Q.E.D.
PROPOSITION 4.5.  On X one has the following formula
OR® ~0k' 0A dRC 0A
LAY —— =k + k'L ,GA€ o
5 50, P~ a0,00, 00 T AT 54,59, 0
1 A
2 a¢aa¢ﬂ ¢a[b (432)

where k' = k/k and the index (I) has been dropped for the sake of simplicity.

Proof. From
A ¢.Ch =534
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it follows, by multiplying by R°G2, that
k _
AF §.R” = zGER°A.

Differentiating twice with respect to ¢, and ¢, yields

ORE ORE 0k 0A
L, A%—— + 424 =2k—
P ( 5, T a¢a> 56.06,%
OR€ 04
2k'L,GACT
+ A aqsaaqsﬂ ¢aﬂ
0% A
k—— ... E.D.
+ a(baa(bﬂ(baﬂ Q

Let M, = L,A%'V,R5 be the first term on the right-hand side of (4.29).
Then

A B AaRB A aRC C
M, =L A¥'V,R® = LAY ——,p + LAY VY, U".  (433)
0o, oU
Furthermore, the bicharacteristic system for (4.20) is

dx* 04 dp, 94

ds  d¢, ds  ox*
hence
0A dx? d¢ A
— =y =—=— . 4.34
a¢,,¢“" ds P =45 ox? (434
Now, let M, = L,A%¢n,n’ RE(V,UC), . From
A
A3t ¢, RPL, = kW

we easily obtain

k 04
— T b c
M, maucn(vﬂu ).
Finally,
Lok dA ORCAA k 9*A
M=—k—>"_kL,G*
x 4G a¢aax“+2a¢aa¢,,¢“”

OR®
+ LA<A%AW(V(1UC)+ — [5R% + A"é‘éRC(VaUB)+>

+\/—|?~|Wn”(VBUC)+. (435)
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The “rays” are introduced as the bicharacteristics of the characteristic
equation (4.20), that is,
dx* 94 1
= = CKe 4.36
ds 0d¢, k (4.36)
Then equation (4.26) can be written as a transport equation along the
rays,

k(;—l;l+N1'[2+M1'I=O. 4.37)

Let A be a parameter along the rays related to s by

ds
= k. (4.38)
Then (4.37) becomes an equation of the Bernoulli type whose solution

corresponding to the initial value I1(0) at a given initial point on the ray is
I1(0)

(2) = 7 ;
N(X¥)exp[— Q(l’)]dl’>

exp [Q(l)]< 1+ l'I(O)J~

0o

(4.39)

where
A
Q)= J M(X)dA'. (4.40)
0

We see that the discontinuity amplitude II(4) can become unbounded
after a finite A-time if either

(i) exp[— Q)] > for A-A* o0r

(i) <1 +T1(0) f N(l’)exp[—Q(l’)]dl’)—»O for A— A%,
0

The first case corresponds to the occurrence of caustics. Sometimes it is
called a linear shock because it can also occur for linear equations (where
N =0). The second case corresponds to the gradient catastrophe and is
interpreted as the formation of a shock wave (although a rigorous proof of
this is still lacking in general) (Jeffrey, 1976). The finite parameter i* is
called the critical time. A necessary condition for the existence of a critical
time is

IT(O)N(4) <O.
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The typically nonlinear case (ii) does not arise when the exceptionality
condition N = 0 holds, that is, when
A
_R€=0. 4.41
au° (4.41)
An interesting formulation of the above condition, which is independent of
the choice of the field U, is the following (Boillat, 1973).
For any function f(U) define

6f of

6UC 6U65UC

of =

which is independent of the choice of U. Then equation (4.41) is equivalent
to

SA=0. (4.42)

For propagation into a constant state, IOJ = constant, and in the absence

of external sources, f = 0, equation (4.37) simplifies considerably, yielding

dIl 1 — -, I 0*A
s +m(5A)l'I + 5 a(baa(bﬂ(baﬂ 0. (4.43)
Define
Y
_075(1'

Then when N = 0 (which corresponds to the linear case or the exceptional
case) equation (4.43) can be rewritten as

V(II?4%) =0, (4.44)

which is a conservation law for the amplitude discontinuity IT2. Similar
results are obtained in the case when ¢(x*)=0 is a multiple root of the
characteristic equation (4.20).

We shall limit ourselves to the case of hyperbolic systems. Let

¢a:Ca_ﬂ€

and suppose that u is a root with multiplicity r of the characteristic
)
equation, the other roots being simple. Then

Z(¢a)=H<#— #>r<#— #)---(#— u )
1) 2) (N=r)
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with H a proportionality factor. The roots u must be homogeneous
)
functions of ¢, of degree 1 and therefore

B— p=C"y,
1)

with ¢* independent of ¢,. Let
A($a) = @,
Then B R .
A(d,) = [A(¢.) T A(d,), (4.45)

where ﬁ(q&a) is of first degree in ¢, and Z(q&a) does not contain ﬁ(q&a). LetR,,
L;, i=1,2,...,r be the right and left eigenvectors of

Ao,
corresponding to the multiple root pu.

L
Then from equation (4.19) we obtain

ZA=TLR{. (4.46)
Proceeding as in the previous case yields

L;JA%'RPV,IT; + L; ,A%&n,RERCTLTI,
+ ILL,,(A%'V,RE + A%n,REn*(V,UC),
+ RE(V,US), — f2RB)=0. (4.47)

Now it can be proved that (Choquet-Bruhat, 1969)

dA
LjAA%ARiB = kijw, (448)
where k;; is a nonsingular matrix.
In fact, it is easy to see that
a8~ 1~ )G3R? (449)
1t

and differentiating with respect to ¢, and muitiplying by L ,; yields, on the
characteristic hypersurface,

0(#—#)

I

o¢,

Furthermore, from equation (4.49), differentiating with respect to U¢ and

LAjA%ARiB = k
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multiplying by L,; and RS gives, on the characteristic hypersurface,

(1)
L,;A5c 0 RIRE = WkuRf,

which can be written as
/|G| OU° k

Then, in this case the exceptionality condition becomes

ad BpC _
L; AgecnRiR, = —

(4.50)

A
50T RE=0.

4.3. Weak discontinuities in relativistic fluid dynamics

In this section we study the propagation of weak discontinuities in

relativistic fluid dynamics. The characteristic equation, the propagation

speeds, and the right and left eigenvectors have been studied in Section 2.3.
We have

A=det(A5'¢,) = (e + P\ () [(Wh.) — peh™dady].  (4.51)

The acoustic waves correspond to the roots of

A=(9,) — P $upy=0. (4.52)
The corresponding right and left eigenvectors are
—h™¢.p;
R=1}| (e+p}a |,
0 (4.53)

L= (a¢ua _aZ, _haﬂ(ba(bﬂp;)a

where a = u*¢,.
Then the tangent vector to the rays, K*= L,A%R? is found to be

K*= —2a*(e + p)(au® — p,h**¢,). (4.54)
From
oA .
5, = et Pratau — piig,)

it follows that 1

ke — .
(e + p)3a?
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Also, it is easy to see that

No a5(e+P)< 1— P;)+%>‘ (4.55)

JIG] p.

The exceptionality condition is then

(e+p)P. _

e

20 —-p)+ 0. (4.56)
If we assume 0 < p, < 1 and p, > 0 then the only solution is p, = 1, which
corresponds to the relativistic incompressible fluid (stiff matter).
Dropping the assumption p, > 0 we obtain the general integral of (4.56)
(Boillat, 1973)

m2

(e+b)’

p=b-— 4.57)

with m=m(S), b=b(S) arbitrary functions, which does not seem to
correspond to physically sensible fluids.

As an example we consider the special relativistic problem of a
discontinuity wave propagating into a fluid at rest. Then, in the fluid ahead
of the front

=(1,0,0,0)
and for the acoustic characteristic hypersurface we take
¢ =x!—c,x°
with ¢, = \/;JZ the speed of sound ahead of the front. It follows that
a=u'eo,= —c,
From the definition (4.22) and the acoustic right eigenvector (4.53), the

discontinuity amplitude is given by

n- -0 0 (4.58)

s

where v is the 1-component of the three-velocity.
For plane waves propagating into a constant state one has M =0 and
equation (4.26) reduces to

210,011 + (0,611 + 2 (10,012 =0, (4.59)
x 2
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where

w={21 —c§)+e:2p(p;’)}+ (4.60)

is the relativistic compressibility parameter (whose physical significance
will be discussed in Chapters 8 and 9). From the latter equation it follows

that
[[9,v]1(0)

. 4.61)
L+ [[3,0110)

[[0,v]1(x°)=

Therefore, under the compressibility assumption W > 0, an initial negative
slope discontinuity will break in a finite time x§ given by

o____2
*T WILa,0]10)

Notice that xj — oo for the stiff fluid matter (p, = 1) and for the exceptional
state equation (4.57).

The above exact law for the behavior of the discontinuity could be used in
order to check the accuracy of numerical codes for relativistic fluid
dynamics.

For material waves we have A = u*¢,, hence

X (4.62)

oAl
Oba |z

ua

Furthermore,

and the exceptionality condition

0A
——_R¢=0
ouc™
is easily verified. Therefore the material waves are exceptional.
Also,

0*A
—F—=0
a¢aa¢ﬂ
and the transport equations reduce to
wV, II;=0,

which states that the discontinuity is convected along the fluid flow lines.
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4.4. Weak discontinuities in relativistic magneto-fluid dynamics

The characteristic equation, propagation speeds, and the right and left
eigenvectors have been studied in Section 2.4. We recall that

A=det(A¥ ¢p)= Ea’A>N,. (4.63)

The magnetoacoustic waves correspond to the solutions of

N, =nle,— 1)a* — (n + |b|*)a*G + B*G =0. (4.64)
For magnetoacoustic waves the tangent to the rays is
K*— 4kEa®A2N®, (4.65)
with
10N,
- 44¢,

and the nonlinear coefficient N of the transport equation given by

k
N=— Ea?A%5N, (4.66)

Jial

using the definition of the operator & given in Section 2.4. Now one has

ON, = [4n(e, — D)a® — 2(n + €,|b|*)aG] $,0u® + [na‘e,
+ (¢}, — Da*(e, + 1) — a’G(e, + 1) — €| b|*a>G ] 6p
+ [—2€,a*Gb, + 2BG $,]5b". 4.67)
From (2.72) one has

d.ou" = — ?;—“5,;. (4.68)

From (2.74), after substituting into equation (2.70),

1
V,b* + b*V,p=0. 4.69
erp VP (4.69)
From (4.69) we obtain
B
¢ Ob* + ;5p =0. 4.70)

From (2.75) we get

1
adb? — BouP + E( —e,ab? + Buf)op=0 4.71)



4. Propagation of weak discontinuities
and by contracting with by,
ab,6b* — Bb du* — :—;a|b|25p =0.
From (2.74) one has
au,ob® — gép =0,

and substituting into equation (4.71) finally gives
2 B2
b,ob* = 2|2 — = )op.
n ha
Therefore, after some manipulations

0N, =a*[a*K, + GK,]dp,
where
K, =ne,+ (e, — 1)(3 — 5¢,),

2|bJ?
K,=—eplb]* + (e, — 1)<3+ |'1| e;,>.

The exceptionality condition for an arbitrary magnetic field gives

2pe(1 — pe
;,+p( p):,

e+p

which corresponds to the stiff equation of state.
The Alfvén waves correspond to the solutions of

A=Ed®> - B*>=0.

For the Alfvén waves dp = 68 =0, hence on = 0. It follows that

8A =2[a’b,6b® + Ea¢,6u® — Bo,6b"].
From (2.91) one has

ob’ = E5uv
a

93

4.72)

4.72))

(4.73)

(4.74)
(4.75)

(4.76)

(4.77)

(4.78)

4.79)

and one can easily check that 64 =0 (Greco, 1972). Therefore the Alfvén

waves are exceptional for any equation of state.

The material waves correspond to the double root a? = 0. Therefore, the
rays coincide with the fluid streamlines and the exceptionality condition

oa=0 is easily verified from (2.89).
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4.5. Electromagnetic and gravitational discontinuities

As an introduction to the gravitational case we shall first treat electromag-
netic discontinuities (Lichnerowicz, 1960). Similar techniques will then be
applied to the study of gravitational discontinuities. The unified treatment
will show the great similarity between electromagnetic and gravitational
waves.

We start with Maxwell’s equations (2.46)—(2.47) and assume that only
free currents and charges are present. Then the electromagnetic induction
tensor I*# obeys the constitutive law (2.60)

1
I1f = __F°f (4.80)
Ho
with y, the vacuum magnetic permeability. Therefore the electromagnetic
field equations become

[0.F;,1=0, (4.81)
VF* = dnp, Je. (4.82)
Our considerations will be local and we shall work in an open subset Q of

space-time .#, with local coordinates x* Let ¢€2(Q) and consider the
hypersurface X of Q defined by

B(x*)=0 (4.83)

(where it has been assumed that d¢ #0 on X).
We shall study weak electromagnetic discontinuities of order 1, that is,

the electromagnetic field derivatives, 0, F .z, suffer a jump discontinuity across
Z. Let

la = aa ¢'
Then the compatibility relations (4.13)—(4.14) can be written as
[[0,Fap]] = [[V,Fapl] = ugl,, (4.84)

where ,, is an antisymmetric tensor defined on X which has a different
meaning according to whether X is null or nonnull. We shall also assume
that the current J* is continuous across X. Then, by taking the jumps of
equations (4.81)-(4.82), one obtains

LWy 1p¥sa + ap =0, (4.85)
Fipap=0. (4.86)
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By contracting equation (4.85) with [* and using (4.86), one has

Pl g, =0,
whence, in order to have a nonvanishing discontinuity,
k=0 4.87
and X is a null hypersurface.
Also,
IV, =8V, =0 (4.88)

and therefore I is a null geodesic vector field.

By suitably restricting Q we can always introduce coordinates (x%),
adapted to X, in which the equation defining X is x°=0. In these
coordinates we have

[,=1(1,0,0,0),
g°° =0, (4.89)
la — (0, gOi)‘

Furthermore, in these coordinates, we also have
LVl =1,V,0° + 1V, =0,
hence
Vel°=o0. (4.90)
Now we shall derive a transport equation for [[V,F,;]1] along the nuil

geodesics tangent to [* (the rays).
It is easy to check that [[V,F,;]] obeys, on Z, the relationships

L[[VeF g, 11+ [[[VoF,e11+ LIIV,Fop]1=0 (4.91)
and
LI[V,F*]]=0. (4.92)
In coordinates adapted to X, equations (4.91)—(4.92) read
[[V.F;;]11=0, (4.93)
[[V,F311=0. (4.94)

By differentiating equation (4.91) along X, putting o = i, and summing on i,
we obtain

VAPLLVF 1) + Vil [[V.F11) + V(L[ [V, F31D) =0,
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which is, using [° =0 and V,I° =0,
PV, [[VoF g, 11+ (V) [[VoF 3y 11+ Qop, =0, (4.95)
with
Qupy = (V) [[V,F11+ (Vi) [[V.F11 + [,[[V:V,F}]1]
+1,[[V.V,Fy]] (4.96)

Now we shall assume that the electromagnetic discontinuity propagates in
vacuo, J*=0. Then, by using (4.82), (4.94), and

[[VV,F;11=[[V,V.F}]],
Q,p, can be written in the form
Qupy=[[Vl V. F5 + V1V, F511 = [ [V,VoF71]
- ly[[VaVOFg]]
Also,
[[Vl, V, Fo+ VLV, Fi11=[[Vy(l,V,F0)+ V,(,V,F5)]]
—IP[[V,(VsF,,+ V,F,5)]]
and by using (4.81) we get
Qaﬂy = lpvp[[VaFﬂ'y]] + [[Vﬂ(lpVaFg) + V'y(lpVaFﬁ)]]
— L[[VoV.Fy11—LI[VoV.F31]. (4.97)
Now it is easy to see that, in adapted coordinates,
Qaij = lpvp[[VaFij]]a
QaO = lpvp[[VaFO:I]
and therefore equation (4.95) is rewritten as
20V, [[V,Fpl]1+(V,P)[V,F,]11=0, (4.98)

which is the transport equation for [[V,F,,1].
By substituting equation (4.84) into equation (4.98) we also obtain

2V o + (VP W0y = 0. (4.99)

Now, let n* be a vector field such that n*l, # 0 on X (by suitably restricting
QANZX, n* can be constructed using an orthonormal frame). By contracting
equation (4.85) with n* we get

l//az[l = lal//lf - lﬂl//a (4100)
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with ¥, defined on X and such that
WY l*=0. (4.101)

By substituting the representation (4.100) into equation (4.99), it follows
that

200V 3 + (V1P Wy = X1, (4.102)

for some scalar x.
It is easy to see that y, is a spacelike vector. In fact, at a given point,
one can always choose an orthonormal frame such that I*=(1,1,0,0),

hence ¥, =(o, — Yo ¥2,¥3) and Y = (,)* + (¥3)* > 0. Contracting
equation (4.102) with y* yields the conservation law

v,Ply1*) =0, (4.103)
with
W1 =¥y,

Now we turn our attention to the discussion of gravitational discontinu-
ities (Lichnerowicz, 1960). Until now we have assumed that space-time is a
differentiable manifold ./ and this implies that the coordinate transform-
ations x*= x*(x’*) must be C* functions. Although this assumption is
adequate for the rest of the applications treated in this book, it is overly
restrictive in the case of gravitational discontinuities and gravitational
shocks. In fact, a thorough analysis of the initial value problem for the
Einstein field equations leads naturally only to the restriction that the
coordinate transformations x* = x*(x'"*) be of class C?, piecewise C> C*
(Lichnerowicz, 1955; Synge, 1960). These transformations will be called
admissible coordinate transformations. Consistently, with the differentia-
bility properties of the coordinate transformations we shall assume that the
components of the metric tensor, g,;, are of class C*, piecewise C?, C>.

Let Q be an open subset of #, ¢eD(Q), and X be the hypersurface given
by

with d¢ #0 on .

We shall study gravitational discontinuities, in the sense that the second
derivatives of the gravitational potential, g,, ., suffer a jump discontinuity
across X.

Therefore the Riemann tensor will be discontinuous and we are dealing
with impulsive gravitational waves. From the geodesic deviation equation
(Misner et al., 1973) one sees that these waves induce jumps in the
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acceleration of a test particle and in principle could be detected in this
way.
The compatibility relations (4.13)-(4.14) applied to g,4 ,, yield

[[9up,u]] = hogl,ds (4.104)

lu = ¢,u

and h,; is a symmetric tensor defined on T which has a different meaning
according to whether X is null or nonnuil. Under an admissible coordinate
transformation

where

x* = x*(x'P),
one has
Gov = A‘;'Af’gaﬂ’

whence
[[ae’p’ga’t’]] = A‘;’AE’Aé’A‘;’[[ai‘;gaﬂ]]

+ gup([[07,, A5 11 AL

+ AL [[07,,A2]1]). (4.105)
The compatibility relations applied to

0z, Az
yield

[[02, 4211 =tl,1,1

vip'ta's

with * defined on X. Finally, we obtain that, under suitable coordinate
transformations which are tangent on X to the identity transformation, h,;
transforms according to

hyg = hop + tlg + tgl,, (4.106)

also called gauge transformations.
If the transformations are C>, then h,; is invariant.
From the definition of the Riemann tensor (Misner et al., 1973)
R%lu = alr%u - aur%l + anr’ﬁu - rZur’l;l’
where
a
Bu

are the Christoffel symbols

T4, =39 (0590, + 0,905 — 0,95,),

we have
[[Ruypil]l= %(lllﬂhau = Llghy, + LLhg, — Ll hg,), (4.107)
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and this expression is invariant under the transformation (4.106). From the
definition of the Ricci tensor (Misner et al., 1973)

R,=¢"R

ppoas

we have
[[Ral]]%gﬂu(lllﬂhau + laluhﬂl - lulﬂhal - lllahﬂu)’ (4108)

which is also invariant under the transformation (4.106).
Einstein’s field equations are (Misner et al., 1973)

R, —39asR =87y T,y, (4.109)
where
R = g‘l"R“v

is the curvature scalar, T, is the matter energy-momentum tensor, and y is
the gravitational constant. We shall assume that the matter energy-
momentum tensor T, is continuous across . From equation (4.109) it
follows that

—R =8nyT,
hence
[[R]1]1=0
and, therefore,
[[Ry,]1]1=0. (4.110)

Now let us introduce coordinates adapted to X, for which the defining
equations are x°=0 and I,=(1,0,0,0). In these coordinates the only
discontinuities in the second derivatives of g, can be in 95,9,;. We have

[[a(z)ogij]] = hij’ [[a(Z)OgOa]] = hy,.

From the transformation (4.106) one sees that h;; is invariant whereas h,,
transforms according to

hOa_) hOa + tola + ta-

By a suitable choice of ¢, it is possible to make h,, vanish and for this reason
ho, is said to represent inessential discontinuities whereas h;; represents
essential discontinuities. In these coordinates, equation (4.110) reads

[[R:;1]1= —g?lglhi; =0, @.111)
[[Roi]]= %gﬂ“(loluh,-ﬂ =gl ho;) =0, 4.112)
[[Rool]l= %g”“(l,,hou + Lhog — Llghoo — hyup) = 0. (4.113)
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We require nonvanishing essential discontinuities, therefore (4.111) yields
gLl =0 (4.114)

and, as in the electromagnetic case, one sees that /, is a null geodesic vector
field. Then equation (4.112) gives

Finally, equation (4.113) yields
2hy IF —h =0, 4.116)
where
h = gaﬂhaﬂ.

Equations (4.115)—(4.116) are equivalent to the covariant equation
haﬂla - %hlﬂ = 0, (41 17)

which is invariant under the transformation (4.106).

The propagation equation for the discontinuities can be obtained along
similar lines as in the electromagnetic case. Starting from the explicit
representation (4.107) for [[R§;,]] it is easy to show that

LIIRG,1] + LI[RG,:11 + L[[R;,11=0, (4.118)
L[[R}:.11=0. (4.119)

In coordinates adapted to X, equation (4.118)—(4.119) are
[[Rep:11=0, (4.120)
[[RY,1]1=0. (4.121)

Differentiating equations (4.118) along X with respect to V,, putting v =1,
and summing yields

PV, [[Rapand] + (V) [Rupsn]] + Qupa =0, (4.122)
with
Qupan = (VL L)[[RE, 1] + (VL) [RE:]1]
+ LI[ViR, 11 + LI[ViRY,]] (4.123)

[where equation (4.121) has been used.]
Now we assume that the propagation occurs in vacuo,

Raﬂ = 0
Therefore, from the Bianchi identities (Misner et al., 1973)
V,Rapiu+ ViRapup + V,Rapp1 =0, (4.124)
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it follows that

V,R2;, =0. (4.125)

afu
By using this latter equation we have
Qapin= LIVl )R, + (V,)R0:1] — LI [VoR3,1]
= LL[VoRZ;1].
Also, by using equation (4.124)
Qupan = PLIV,Ryps, 11 + [IVil,RE,) + V(RG] ]
—LiLIVoR2s, 1] = LI[[VoR2,:11:
In adapted coordinates we have
Qaﬂii = lpr[[Ramj]],
Qaﬂio = lpr[[Raﬂio]],
and, therefore, equation (4.122) becomes
20V, [[Ryp, 1] + (VIP)[[Ryps,11=0. (4.126)
By substituting the representation (4.107) into (4.126) we obtain
Lilpeo, = LlgCus + Ll cpz — Llicp, =0, 4.127)

with
Cap = 2°V by, + (V,[P)hy,. (4.128)

Let n* be a vector field on T such that n*l, # 0. Contracting equation (4.127)
with n*n? gives

Cou =@, + @1, — D@L, 4.129)
with
@, =n’c,;, ®=n'n"c,. (4.130)
By defining R
o, =, - iD],, 4.131)
we obtain the transport equation for h,,
2PV by + (V) = D1, + B, (4.132)

By a gauge transformation (4.106) we can always make h = 0, hence
houlf =0. 4.133)

Therefore, by contracting equation (4.132) with h**, the following conserv-
ation law is yielded
V,(&17)=0, (4.134)
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with
& = h,, h*.

Equation (4.134) can be interpreted as energy conservation for gravit-
ational discontinuities.

In general relativity the concept of energy density for the gravitational
field is rather elusive. However, it is remarkable that one can derive a local
energy conservation law for impulsive gravitational waves.



5

Relativistic simple waves

5.0. Introduction

Simple waves are exact solutions of quasi-linear equations representing
traveling waves. They are the most natural nonlinear analog of the plane
traveling waves of the linear theory. Although they correspond to special
initial conditions, they are still sufficiently general to be of physical interest
(as witnessed by Friedrichs’ theorem, which, loosely speaking, states that
any one dimensional smooth solution neighboring a constant state must
be a simple wave). Simple waves are exact analytical solutions which show
clearly some of the main features of nonlinear wave propagation in general,
such as steepening, breaking, and shock formation. They are also suffi-
ciently complex to be useful as benchmarks against which to test numerical
codes.

In classical fluid dynamics simple waves are of paramount importance
for several reasons. Simple waves are the basic ingredients for constructing
analytical solutions to the Riemann problem (or shock-tube problem: the
evolution of an initial state corresponding to two adjacent fluids at different
pressures). These solutions are among the standard tests for numerical
hydrodynamical codes (Sod, 1978) because they comprise some of the key
features of general hydrodynamical behavior (nonlinear steepening and
the occurrence of discontinuities). Also, analytical solutions to the Riemann
problem can be used in order to construct sophisticated numerical codes
able to deal very accurately with shock front tracking (Plohr, Glimm, and
McBryan, 1983). Simple waves are also used in order to construct approxi-
mate analytical solutions to the problem of weak shock decay (Landau
and Lifshitz, 1959a; Whitham, 1974; Courant and Friedrichs, 1976) and
in Whitham’s theory of geometric shock dynamics (Whitham, 1974).

Given the importance of simple waves in classical fluid dynamics it is
to be expected that simple waves solutions would play an analogous role
in relativistic fluid dynamics.

Relativistic simple waves are relevant in a variety of astrophysical
problems; here we shall mention only a few examples arising from the
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theory of extragalactic radio sources. Several other examples could be
mentioned from relativistic astrophysics.

Jets seem to be characteristic features of extragalactic radio sources.
They might be associated with collimated relativistic outflow, a character-
istic property of active galactic nuclei (which are thought to power extra-
galactic radio sources). Jets may delineate a channel along which power
from the nucleus is fed into the more extended radio structure. In some
jets the light comes primarily from a regularly spaced series of bright knots.
These knots could be associated with shocks behind which the relative
energy of the flow can be dissipated in particle acceleration and synchro-
tron radiation. There are several hypothesis about the origin of these
shocks. Rees (1978) suggested that the knots be attributed to the steepening
of nonlinear acoustic waves in the jet. The acoustic waves would be gene-
rated by variations in the outflow velocity of a beam produced in the
nucleus. An alternative hypothesis is that the knots be identified with
dense blobs of gas which are compressed and swept outwards by the gas
pressure of the jet (Blandford and Konigl, 1979). Assuming the blobs are
supersonic with respect to the jet, they would be followed by strong bow
shocks. Obviously, other explanations could be envisaged for the origin
of the knots.

The process of shock formation could be very important also in other
astrophysical situations. For instance an interesting example is provided
by the nonlinear evolution of adiabatic perturbations in the early universe
ad this topic will be touched upon in Section 5.5.

As we shall see, a study of relativistic simple waves sheds light on the
problem of relativistic shock formation due to nonlinear steepening.

Simple waves in relativistic fluid dynamics were first studied by Taub
(1948) who introduced them through the Riemann invariants. Subse-
quently, they were analyzed in detail in several contexts by Liang (1977a)
and K&nigl (1980), using Eulerian coordinates, and by Lanza, Miller, and
Motta (1985) using Lagrangian coordinates. Relativistic simple waves have
been used by Thompson (1986) in order to construct solutions to the
relativistic shock-tube problem, a crucial benchmark for testing numerical
relativistic hydrodynamical codes.

In many situations magnetic effects can be extremely important (for
instance the magnetic field in a jet can be dynamically significant; Begel-
mann et al.,, 1984) and, therefore, one has to resort to relativistic magneto-
fluid dynamics.

Simple waves for relativistic magneto-fluid dynamics have been
considered in the plasma physics literature but have not been studied in
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great depth (Akhiezer et al., 1975). A detailed analysis was performed by
Anile and Muscato (1983) for some cases, using Lagrangian coordinates.
General qualitative properties can be found in Anile and Muscato (1988)
and a numerical integration in several cases of physical interest has been
performed by Muscato (1988b). These solutions are relevant for the relati-
vistic magnetohydrodynamical shock-tube problem, which could be a very
useful test for numerical relativistic MFD codes (Sloan and Smarr, 1986;
where the tests are performed only by using the linearized magnetoacoustic
and Alfvén wave modes).

The breaking of simple waves in relativistic fluid dynamics and magneto-
fluid dynamics has been studied in detail by Muscato (1988a).

The plan of the chapter is the following. In Section 5.1 we recall the
basic definition of simple waves and Friedrich’s theorem. In Section 5.2
we determine the general expression of the Riemann invariants for
relativistic fluid dynamics. In Section 5.3 we write the equations of one
dimensional relativistic fluid dynamics in Lagrangian coordinates, which
will be useful in what follows, and in Section 5.4 we determine the simple
wave solutions in these coordinates. In Section 5.5 we give explicit expres-
sions for the Riemann invariants in the case of relativistic fluid dynamics
for several state equations and we present some applications to the problem
of the evolution of adiabatic perturbations in the early universe. These
sections deal in detail with the nonlinear evolution of relativistic acoustic
simple waves. Simple waves can also occur within supersonic flow (Courant
and Friedrichs, 1976) and analytically are usually treated in the framework
of stationary potential flow. Sections 5.6 to 5.8 aim at providing the
relativistic extension of the classical theory of stationary potential flow.
In particular, in Section 5.6 we introduce the basic definitions and pro-
perties of isentropic flow for relativistic fluid dynamics. In Section 5.7 we
study, by using the hodograph method, the general properties of unsteady
one dimensional and isentropic flow in special relativity (Lichnerowicz,
1967). In Section 5.8 we derive the equations describing stationary potential
two dimensional flow in special relativity and determine the corresponding
Riemann invariants and simple waves (K 6nigl, 1980). Finally, in Section 5.9
we investigate the properties of simple waves in relativistic magneto-fluid
dynamics and we study in detail their behavior for several state equations.

5.1. General formalism

In this section we consider homogeneous quasi-linear hyperbolic systems
in the one dimensional case, that is, dependent only on two Cartesian
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coordinates x° x!. They can be written as

U ou
W+,<a¢f1(U)—=0. (5.1)

0
0 ax!

We can state the following definition.

DEFINITION 5.1. A simple wave for the system (5.1) is a smooth solution
U(x% x!) of the form

U = U(p(x° x")), (52)
with o(x°, x') an appropriate C* function (called phase).

By substituting equation (5.2) into (5.1) we obtain

du
(%00 + L' 0;)—=0,
do
. du .
whence, in order to have o #0, it follows that
@
det (L% + L1p,)=0. (5.3)

Therefore, ¢(x° x') must obey the characteristic equation. It is con-
venient to introduce

A=-20 (5.4)
@1
Then (5.3) becomes
det (! — A% =0. (5.5)

*)
Let A® be a simple eigenvalue and d be the corresponding (normalized)

(k)

du
right eigenvector. Then — must be proportional to d,
do

(k)
U_,4q, (5.6)

with 7 a proportionality factor.
Let U=(u',...,u)". Then it is possible to write (5.6) in the form of
an exterior differential system
du? du®

= =g (5.7)
d(lk) d%t)
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One takes u' =u'(p) as an arbitrary function of ¢, then u?, ... u" as
functions of u' are obtained by solving the above system.

The solution of the system (5.7) is equivalent to the determination of
k) ) )
N —1 first integrals J (u*,...,u"), J,@u*,...,u¥),...,Jy_ (u',...,u"),

which are called the Riemann invariants corresponding to the eigen-
value A®.
It is easy to prove the following properties:

PROPOSITION 5.1.  The solution vector U in S is constant along the family
of C® characteristics, which are straight lines.

(k)
Proof . In fact, ¢ =const. along a C characteristic, therefore U = U(p)

®
is also constant on C. It also follows that A® = A*Y(U) is constant on

*®)
C, hence the characteristic

oo =0

is a straight line. Q.ED.

®) )
Let S be a A®-simple wave region, and J,(U),..., Jy_;(U) be the

Riemann invariants. In S one has
(k) (k)
Ji(U)=--=Jy_;(U)=const.,

which defines a submanifold V of the U-space 2 < R". It follows that,
on V,

(k)

%
i .
6UAdUA=O’ i=1,...,N—-1
and, by (5.6),
(k)
a'l] (k)4
Wd _0, l=1, ,N—l (58)

We can now state Friedrich’s theorem.
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THEOREM 5. Let € be a smooth nonintersecting curve of the plane given
by Y(x° x1)=0 and Q, = ((x° x):¢(x° x')=0). Let U, be a constant
solution of the system (5.1) in Q . and U, be another solution which is smooth
in an open subset Q' of Q_ whose boundary y intersects € and such that it
Jjoins continuously U, across yn%. Then U, is a simple wave in an open
subset of .

The proof can be found in Jeffrey (1976) or Cabannes (1970).
In a simple wave region corresponding to the eigenvalue A% the A%-
characteristics are the straight lines

x! =&+ AWx°,
with
x!(x®=0)=¢.

Let (0, &) = f(&) be the initial value for ¢. Then, because ¢ is constant
along the A®)-characteristics, we have

¢ =f(%)
&=x! — 29(U(f(&))x°.

The breaking occurs when two characteristics intersect and this implies
(Whitham, 1974)

(5.9)

di®
d¢

0

1+ x”=0.

The critical time ¢tz for breaking is then

. 1
tB=ll'§1f _W’ (510)
d¢

A9 = 29U (9)).

In the examples given in what follows we shall consider sinusoidal initial
values for the phase, of the kind

ﬂ®=mm%t (5.10')

In the next section we shall apply the above formalism to relativistic
fluid dynamics in Eulerian coordinates.
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5.2. Simple waves in relativistic fluid dynamics:
Eulerian treatment

The field vector U is

uV

U=sUY=|e | (5.11)
S

We recall the basic results of Section 2.3. The acoustic waves correspond
to the roots of

(") — Ph™p,p5=0 (5.12)
and the corresponding right eigenvectors are
—h",p,

d= | (e+pa |, a=u’op, (5.13)
0

The acoustic simple waves are solutions of the differential system

d
au_ d. (5.14)
do

Then it is immediately possible to obtain the following Riemann
invariant

S=const. = §,, (5.15)

and, therefore, acoustic simple waves are isentropic.

Let us introduce Minkowski coordinates (¢, x!, x2 x*) in Minkowski
space .#. Then, because we are in the one dimensional case, ¢ = ¢(t, x),
having set x = x!.

We can always take

0=x—At. (5.16)

Letu* =I'(1,v,, v, v,) in Minkowski coordinates. Then a = I'(v, — 1) and
the characteristic equation (5.12) is written

(1 = A2, — A2 — (1 — AY) =0, (5.17)

where ¢2=p,, ¢,>0 being the local speed of sound (corresponding to
v, = v, =0, =0 in the characteristic equation).
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The right eigenvectors read explicitly

—cX(A+Ta)
c2(1 + I'v,a)
d=| —cToa |. (5.18)
—clv,a
(e +pa
Hence, from (5.14),
d(dr(:y) = — ncZal'v,, (5.19)
dlvs) _ nctalv,, (5.20)
do

whence we obtain the Riemann invariant

% = constant. (5.21)
vZ
If in the fluid flow there is a point with vanishing speed, v¥ = v} = v¥ =0,
then from (5.19)—(5.20) we obtain

v, =0v,=0 (5.22)

y

throughout.

Since we can always assume the existence of a zero speed point for a
wave propagating into a uniform constant state (by a suitable Lorentz
transformation), which is the case of physical interest, henceforth we shall
assume (5.22) to hold.

Then the characteristic equation (5.17) yields

_vx(l _Csz)rzics_ vt

= = =, 523
2+(1-c)r?  1tove, * (5.23)

which is the usual relativistic addition formula for velocities. The C.,
characteristics are those lines with slopes 4., respectively.
From (5.18) it follows that

dv ¢z 1

X s 5.24
do i1 +o.c, I (5.24)
d 1
de _pletpe 1 (5.25)
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hence
do c 1
—=F 5.26
de T (e+p I? (5.26)
which integrates immediately yielding
1+0o, Cs
J.=3In <1 — Ux> + j(e ) de = constant, (5.27)

where J, are Riemann invariants (J, associated with the C; character-
istics) (Taub, 1948).
A right-propagating simple wave has

J_ =constant (5.28)
throughout space-time. It can be obtained by assigning v, as an arbitrary
function of ¢ = x ——x+ s 4

¢= 1+v.c
v+ C
= -1, 529
o f(x 1+vxcs> (529)

where f'is an arbitrary smooth function specifying the initial wave profile.
Then the relationship between e and v, is obtained by J_ = const., that
is, by

c 1+
P _de=1% x ; 5.
j(e+p) e 21n<1_vx>+const, (5.30)
with p = p(e, S,).

Similarly, a left-propagating simple wave has
J . =constant (5.31)

throughout space-time. The solution can be obtained as

v, =f<x_ﬂt> (5.32)
-0
and the relationship between e and v is given by J, = const., that is,
Cs 1 +o,
j(e ) de= —1In <1 — Ux> + const., (5.33)
with
p=ple, So).

It is interesting to notice that the Riemann invariants are not Lorentz
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scalars. In fact, under a Lorentz transformation with x-velocity 8, one has

L Deth
140 p’
hence
1+ C 1+v
J, =1 )y |5 _de=1i x
* 2n<1—v;>_j(e+p) ¢ 2"(1—vx>
1+p c
(25« [t
P\ -p (e+p)
that is,
1
Jo=J, + %m(%). (5.34)

However, the simple wave condition J, = const. is a definition of a
Lorentz invariant because = const.

In the next section we shall rederive the Riemann invariants in the
Lagrangian framework.

5.3. One dimensional relativistic fluid dynamics in Lagrangian
coordinates

Let u be the fluid’s four-velocity vector, assumed to be a smooth vector

field in a domain Q of space-time .#. The integral curves of u represent
the world lines of the fluid particles and their differential equations are

dx*

o =) (5.35)

in an arbitrary coordinate system (x*), where s is the proper time along
these world lines. The solutions of (5.35) (which will exist provided that
Q is sufficiently small) can be written as

x# = x#(&,s), (5.36)
where &, i=1,2,3 are three parameters such that
x# = x#(&',0)

are the parametric equations of a hypersurface X, the initial hypersurface
on which the particles are located at proper time s =0.

The four coordinates (¢',s) form a coordinate system in the neighbor-
hood of the initial hypersurface X (these coordinates cannot be extended
to cover the whole manifold Q because singularities would develop) and
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they are like the Lagrangian coordinates of Newtonian continuum
mechanics. In relativity they are an example of the more general comoving
coordinates. Under the transformation x' = &, x'© = x'%(&, s) the equation
of the initial hypersurface s = 0 becomes

x/O — x/O(x/i, 0)

The x* are general comoving coordinates. In these coordinates the
line element of space-time is written

ds? =g, dx'*dx". (5.37)

Along a world line x" = const. we have ds? = g, (dx'°)? and therefore
the components of the four-vector u in these coordinates are

- 0. (5.38)
V 900l '

In the following we shall consider two differential sets of coordinates
in Minkowski space: the Eulerian coordinates of the inertial frame which
we denote by X*=(T,X,Y,Z) and the comoving coordinates x*=
(t, x, y,z). We shall assume that at the initial time T =0 and ¢t =0 and the
two coordinates coincide, that is,

T(0,x,y,z) =0,
X(0,x,y,2) =x,
Y(0,x,y,2) =y,
Z0,x,y,z) =z. (5.39)

Let g,, be the components of the metric tensor in the comoving
coordinates. From the transformation formulas

_0x"ox?
Ior = G v o0

we obtain explicitly

= TP+ X7+ Y? + 27 = goo,
—Ti+ X3+ Yi+2Z0=9y,,
—T 4+ X2+ Y +Zl =g,
—T?2+ X2+ Y2+ 2Z2=g,,,
~-TT,+ XX, +Y Y. +Z2Z,=9g,
~TT,+ XX, + XY, + ZZ,=g,,,
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~TT,+ XX, + Y, Y.+ Z,Z,=g,,,
~-T.T,+ XX, + Y. Y, + Z,Z,=¢g,,,
—TT+ XX + Y, Y.+Z,Z. =g,
~TT,+X,X,+ Y, Y, + ZZ,=g,,. (5.40)

Let u* =T(1,v,,0v,,0,) be the components of the fluid’s four-velocity in

the inertial frame, with ' =(1 —vZ —v? —v2)"*/2. From the definition

we have

_dX X,
vx_dT_,th’
_dY_y,
YEAarT T
4z _2,
=T4r " T, (5.41)

because x, y,z are constant for a given fluid particle.

Henceforth we shall assume one dimensional flow according to the
following definition: all the physical variables and the components of the
metric are functions of the comoving coordinates (x, t).

From (5.40) we have

T, =T/lgool =f(x,1)
and, by differentiating with respect to y,
T,=T,=0,
hence

0 . I .
% T, =0 with the initial condition

T,00,x,y,z) =0 which then yields
T,(t, x,y,z) = 0.

Similarly we obtain T,(t, x, y, z) = 0, whence
T = T(t,x). (542)
By analogous reasoning we obtain

T =T(,x),
X =X(t,x),
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+z (5.43)

with T(0,x) =0, X(0,x) = x, Y(0,x) = Z(0,x)=0.
From (5.40) we then get

g22=633=1, gor= ~Y't’ Jos=2Z,
gi2=Yy g13=Z2Z, ¢3=0.

Let us write go; = +/|gool #(x, t). Then the metric reads

ds? = (/|gool At + hdx)® + (g, — h?)dx? + dy? + dz? + 2g4, dydt
+ 29y, dzdt + 2g,, dxdy + 29, dxdz. (5.44)

By a well-known theorem on differential forms, the differential form

/|gool dt + hdx has an integrating factor, that is, there exists a differenti-
able function A(x,t) #0, such that

100l dt + hdx = A(x, 1)dt,

with t' a new time variable, ¢t = t'(x, t).

It is easy to check that the transformation (x,y,zt)<>(x,y,z1) is
invertible and that the new coordinates (x, y, z,t') are still comoving.

By relabeling the coordinates and the metric coefficients, finally we
obtain for the line element

ds? = goodt? + g;, dx? + dy? + dz? + 2go, dtdy + 2go;dtdz
+2g,,dxdy + 2g,;dxdz. (5.45)

Now we shall restrict ourselves to one dimensional flow along the x
axis, that is, v, =v, =0. It follows that Y,=Z,=0, hence gy, = go; =0.
Also, from g, = Y,, we have 0,g,, = 0,Y, = 0, Y, = 0. Then, from the initial
condition ¢,,(0,x)=0 (in the reference state t =0 the three-metric is
Euclidean) it follows that g,,(¢,x) = 0.

Similarly, g,,(t, x) = 0. With these restrictions the line element becomes

ds? = ggodt? + g, dx? + dy? + dz2. (5.46)
The transformations from Eulerian to comoving coordinates reduce to
T= :I"(x, 1),
X = X(x,1),
Y=y,

Z=z (5.47)
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Let us consider the equation of mass conservation
1
varl

which in comoving coordinates is written

)

— P
lgl = f(x). (5:49)
\/ v 9ool

V. (pu?) = 0u(/ 191 pu®) =0, (5.48)

whence

It follows that
o/ gl =(/1g1110)=0 = f(x).

Because, at =0, the two coordinate systems coincide, ¢,,(x,0) =1
hence f(x) = py(x), the initial value for the mass density. Then

lg11] p = polx). (5.50)

By introducing a mass coordinate g instead of x, defined by

p= f P Y (o200 (5.51)
we can write the line element in the form
ds? =a%ds? + %duz +dy? +dz?, (5.52)
where we have set a’= — g, (for continuity g,, <0 because at the
initial time ¢t =0, ggo = — 1).

The choice of the mass coordinate yu is especially useful for numerical
calculations.

Then from (5.40) we obtain

T,=al, Tu = I":x’
3 o r (5.53)
X,=alv, X, =-—
P
together with the inverse transformation
Ir =£’ Iy = — rvx’
a p (5.54)
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The mass conservation equation (5.48) written in inertial coordinates
(X% is

J J
MN+-—— = .
S7PD) + 5 (V) =0, (559)
where
U=Tv, T?=14+U2% (5.56)

After some manipulations, using (5.53), equation (5.55) yields
U
p,= —ap? ?“ (5.57)

Because the coordinate transformations (5.47) are assumed to be
sufficiently smooth (at least of class C?), we have

Xut = th
and from equation (5.53) we obtain
U=pla, (5.58)

The energy-momentum conservation equations
V,T* =0 (5.59)

are explicitly written as

1 a(\/ng) _lagﬂu The = (5.60)

/1] ox? 2 0x°*

In Lagrangian coordinates, for f =0 we obtain

£,+p<1-> =0 (5.61)
P/

ap,
a,=——=£, (5.62)
" rf
It is easily checked that the Riemann tensor of the metric (5.52) reduces
to one component, R, ;. (apart from those obtained from it by symmetry),
which vanishes as a consequence of equation (5.57) and (5.58).

and for =1,

5.4. Simple waves in Lagrangian coordinates

The field equations can be taken to be, by suitably arranging equations
(5.57)-(5.62),

al'p,

U, + 7

0, (5.63)
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U
pe+ap? =0,

(5.64)
1
g + p(—) =0. (5.65)
P/
Equation (5.61) is not an evolution equation and decouples from the
others.
By assuming an equation of state
p =p(p, ),
equations (5.63)—(5.65) are, in matrix form,
LY, + 'Y, =0,
where
v
Y=|pl|, and (5.66)
€
0 0 al'p, al'p,
0 . f f
A0 = , ! =|ap? ) (5.67)
p — 0 0
0 -5 1 r
P 0 0 0
The system can also be written in normal form
Y, + Y, =0, (5.68)
where
TO al'p, alp, |
f f
ap?
g=— 0 0 | (5.69)
r
ap
0 0
Ny |

We look for solutions in the form of simple waves Y = Y(¢). Then
(5.68)—(5.69) becomes

(o — ADY' =0, (5.70)
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where A= —ﬁ. The eigenvalues are

"
2
W=0, i3=ta /%ﬂ (5.71)

and the corresponding right eigenvectors are, with « a factor,

1

0 2| f
di=a|-p,|, dyz=af " T \pp>+pp | (5.72)
by P f

T\ p,p* +pp

H+

H+

The case A =0 represents the material waves (where p and U are
constant). The cases 4 # 0 correspond to the acoustic waves. The simple
waves are the solutions of the system

%%=a, (5.73)
dp apz f 1/2

_(_J ), 5.74
dp — T (pﬂf-kmp (574
de ap f 172

e_*»(_J 3\ 7
dp ~T <p9p24-pd>> (5.73)

From (5.74)—(5.75) it follows that

1
e )
Crp—P Loy,

AL T
hence, from the first law of thermodynamics,
ds
—=0 (5.76)
d¢

and, therefore, simple waves are isentropic. Then one can write p = p(e),
and it follows that

p, =ci(l +¢),

p.=clp,
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with ¢2 = p,. Substituting back into (5.76)—(5.77) yields

dp op

L=y 5.77

d¢ T (-77)
and

de ap

— =4 . 578

36~ Tep 79

Then, from (5.73)—(5.78) one obtains

W_le (579)

dp P
which, upon integrating, gives

d
In(T + U) + j CSPP =J, = const. (5.80)

These J. are easily seen to coincide with the Riemann invariants
introduced in Section 2, equation (5.27) (Lanza et al., 1985).

5.5. Evaluation of the Riemann invariants for relativistic acoustic
simple waves

We shall calculate the Riemann invariants for the various state equations
discussed in Section 2.2.
In the case of a barotropic fluid with state equation

p=(y—1e (5.81)
with 1 <y <2, we have for the speed of sound
Then
1 Jy—1
Js =%ln< * "")i L
1—-v, y
and, therefore, right- and left-propagating simple waves are characterized,
respectively, by
1 +302V7 1)
e=e0<1 b "") , (5.83)
-0,

where e = ¢, at v, =0 (Fig. 5.1).
Notice that, for right (left)-propagating simple waves, e > oo as v, — 1
(vx - - 1)
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The solutions we have found provide an interesting way to understand
the nonlinear development of acoustic waves in the early universe. The
content of the universe consists of three components: ordinary matter
(baryon component), radiation (photon component), and possible dark
matter (whose precise form is still under debate). Considering only
the matter-radiation fluid, it is necessary to distinguish two kinds of
perturbations.

Under the first kind, both the radiation and matter can be perturbed
together in such a way that the ratio of the photon number density to
the baryon density within the perturbation is the same as in the
unperturbed medium. These perturbations are referred to as the adiabatic
modes because in this case the entropy per baryon remains constant. For
the second kind, the matter distribution can be perturbed, leaving the
photon density unchanged. The temperature within such a perturbation
is the same as in the unperturbed medium, and therefore these perturba-
tions are referred to as isothermal modes or entropy fluctuations.

Prior to recombination the speed of sound in the matter-radiation
mixture is essentially that appropriate for a photon gas, that is, ¢, = c/\/g,
and the corresponding Jeans length is only slightly smaller than the cosmic
horizon distance (Peebles, 1980). After recombination the speed of sound
is that appropriate for a cool hydrogen gas and, therefore, the Jeans

Fig. 5.1. Progressive simple waves in a barotropic fluid with y = 4/3 (radiation gas).
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length scale drops by several orders of magnitude from its value before
recombination.

The evolution of an adiabatic recombination, in the linear regime, can
be depicted as follows. Let A be the wavelength of the perturbation. We
start following the evolution of the perturbation from the time when it
first enters the horizon size, 1« 1y (otherwise, in general relativity,
ambiguities may arise; Peebles, 1980). The perturbation will grow in
amplitude as long as A> 1,. Adiabatic perturbations with wavelengths
smaller than the Jeans length immediately prior to recombination will
start to oscillate when 1 < 4; and will continue to do so until ¢,... If they
survive after recombination they will begin to grow because they would
once again satisfy the condition A > 4,.

Adiabatic density fluctuations on sufficiently small scales are damped
by the action of viscosity and heat conduction. If the damping time scale
is shorter than the cosmic expansion time scale, the wave will be effectively
damped before the universe has time to expand by an appreciable factor.
This process selects a preferred damping scale 4, as the shortest wavelength
whose damping time scale equals the cosmic expansion time scale. The
exact value of 1, is determined by Thomson scattering of radiation off
free electrons (Peebles, 1971). Only adiabatic fluctuations with 4 > i, can
therefore survive after recombination.

The linear evolution of isothermal fluctuations is much simpler. During
the prerecombination period the amplitude of isothermal waves remains
constant since their growth is inhibited by the drag due to Thomson
scattering. After recombination they will grow in amplitude if 1> 4,.

Nonlinear effects could be important in the evolution of adiabatic
perturbations. A weakly nonlinear density perturbation with a sinusoidal
profile will tend to break and form shocks. If the breaking time ¢, (which
is a function of the perturbation amplitude and wavelength) is much
shorter than the cosmic expansion time ¢, then the wave will break, form
shocks, and dissipate. This nonlinear process imposes an upper limit on
the amplitude of adiabatic perturbations at the equipartition time (Pecbles,
1980). Precise calculations using relativistic fluid dynamics in a cosmo-
logical model have been performed by Liang (1977b), Anile, Miller, and
Motta (1983), and by Carioli and Motta (1984).

In some cases the process of shock formation can be studied by using
the simple wave solutions we have found. For this purpose it is necessary
to extend the above solutions from special relativity to the case when the
background space-time is a cosmological model. This can be achieved by
applying the following result (Anile and Greco, 1978).
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PROPOSITION 5.2.  Let T** be a traceless symmetric tensor satisfying
vV, T*# =0
with respect to the conformally flat metric

Gap = €XP (Y)4p

(where n,5 denotes the Minkowski metric).
If one defines
T =exp (3y)T#

then T* satisfies
0,T* =0.

Proof. By direct computation, one has for the Christoffel symbols of g,

rgu =l(l//,u5£ + l//,0155 - ”au”ﬂvl//,v)’
hence
VaT“B = 6aT“ﬂ + 3!//,aT“B. Q.ED.

This proposition can be applied to a radiation fluid in a spatially flat
Robertson—Walker Universe with the metric
ds? = —dt* + R*(1)5;;dx" dx’, (5.84)

where ¢ is the cosmic time and R(¢) is the universe expansion factor. By
introducing the conformal time 7 defined by

dr_ 1

@ RY (5.85)

the above metric can be written in the conformally flat form

ds? =exp (Y)( — dr? + §;;dx’ dx),

exp <%> =R.

For a test-radiation fluid with energy-momentum tensor

with

e
T =%euu’ + Egaﬂ

the transformation T* = exp (3y)T* amounts to

é=R%, *=Ru (5.86)
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Let

©=1(1,7,0,0, T=(1-s>)"12
Then the simple wave solution (5.83) with y = (4/3) corresponds to

_ V3 -
é=éo<:i;>i(2/ 3), 6=f<x—%r>. (5.87)

We assume that the test fluid described by T* moves only in the x
direction. The peculiar velocity v of the test fluid with respect to the
fundamental observers of the Robertson—Walker Universes [which in the

. 0)
coordinates (7, x') have four-velocity (u“ =(R,0,0,0)] is defined by

=—uu®, [=(1-02) 12

Hence

and it follows that v = v.
Therefore, the above solutions can be written, in terms of quantities
physically defined in the Robertson—Walker Universe, as

1o\t v+1//3
e—e(,(l_v) , v-f(x—m‘E), (5.88)

where e, =% (e, = constant) is the energy density of the background

cosmological fluid.

These equations are the same as in special relativity. The only difference
is that 7 is the conformal time and x is a comoving coordinate. These
solutions had already been found by Liang (1977a) by an ad hoc procedure,
not as a special case of the general result shown above.

Analogous solutions may be found for test-radiation fluid dynamics in
a nonspatially flat Robertson—Walker model.

These solutions would necessarily be more complicated because the
transformations needed in order to put the nonspatially flat Robertson—
Walker Universes into a conformally flat form are quite involved (Hawking
and Ellis, 1973).

In the case of a polytropic fluid with state equation

p =k(S)p’, (5.89)
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we have for the local speed of sound

c2 YP

= . 5.90
pte ( )

Then from the adiabaticity condition u%3,S =0 and the first law of
thermodynamics it follows that, along the flow lines (by a suitable choice
of the additive constant in the internal energy)

p=(—1)pe, (591)
whence
-1
2= 0=D (592)
(y—Dp+yp
From this we see that
c2<y—1.

A straightforward calculation shows that

Cs

1+ ——
j c? d 2j dc, 1 in Jy—1
e = = .
(e+p) G=-D-& Jfy-1 |{__6
Jy—1
Fig. 5.2. Progressive simple waves in a polytropic fluid with y = 4/3; upper curve,
¢, =0.3, lower curve ¢,=0.01.
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hence

1 b 1V
1+ y—
J,. =11 )+ In N

+ 3 n<1_vx>_ —y—l L c,

-1

Therefore, right(left)-propagating simple waves are characterized by

(7 — 1172 ( +v>+ﬂ—2€1_1
(y = 1? - 1-v
)

ey=(y — 12

s

= (593)
(y—1D"*+ <1+v>i 2 q
G-DT-e\1-v)
where ¢; = ¢ (v, =0). Notice that ¢,—»./y—1 as v,— £ 1 for right- and
left-propagating simple waves, respectively (Fig. 5.2).
We remark that, like the situation for acoustic simple waves in New-
tonian fluid dynamics, from (5.93) and the condition ¢, > 0, we can draw

the following limitation on the fluid’s velocity in the direction opposite
that of the wave propagation.

(5.94)

for a right-propagating wave. A similar limitation holds for left-
propagating waves.

Finally, we consider the case of a Synge gas given by the state equations
(2.22)—-(2.23).

The speed of sound is obtained as follows.

From

e =p[zG(z) - 1],
with z = z(p, S), one has

e, =zG —1+p[G +zG']z,.

Now, from (2.23), it follows that

’

_ 1
= pzG”
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hence

Finally, one obtains

o= G'/G1 |
Z<G + ;)
K
where z=-"- and G(z) = 2@ (Fig 53

kgT Ky(2)
Because simple waves are isentropic, we obtain

d 1
i =z<G' + —2>dz
p

z

and, therefore, the Riemann invariants are

1 1/2
G+ |G
Ji=%ln<1+vx>ij z( +22> 5

G

z.

Fig. 5.3. Speed of sound in a relativistic gas (Synge’s state equation) as a function of
the parameter z=m/kyT in the region 0.1 <z< 1.
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In this case it 1s not possible to analytically invert the condition J, =
const. and therefore one must turn to numerical integration (Lanza et al.,
1985). A simple wave is determined by first specifying an appropriate
profile for the three-velocity v, and then obtaining the corresponding
values of z by inverting J, = const. From the numerical viewpoint it is
more convenient to solve equation (5.26) for v, as a function of z (Fig. 5.4).

The critical time for breaking can be obtained from (5.10) for an initially
sinusoidal profile (5.10')

. 2.
D=0, SINn—X.
d

For a barotropic fluid one obtains (Muscato, 1988a)

tp
_d Jr—1 {3—[1+8v3(y — 1)]/2}2
27 {21 + 8vd(y — 1)]V2 — 4vd(y — 1) — 2} 112 2—y ‘

Notice that tz— oo as y—2 (Fig. 5.5). For a polytropic gas one must
evaluate ¢z numerically and one obtains (Muscato, 1988a) the results given
in Figs. 5.6-5.7.

The next section will be devoted to the relativistic theory of isentropic

Fig. 5.4. Progressive simple waves in a Synge gas (v, as a function of the parameter
z=m/fkgT in the range 0.1 <z < 1).
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Fig. 5.5. Critical time in a barotropic fluid. Plot of (t) = 2ntgc/d versus (v) = vy/cy
for several values of y. The lower curve corresponds to y = 4/3, the upper curve to
y =2, and the intermediate one to y=1.9.
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Fig. 5.6. Critical time for a polytropic fluid with y =5/3 in both classical and
relativistic fluid dynamics. Quantities defined as in Fig. 5.5. The lower curve
corresponds to the nonrelativistic case, for which

d
tp=——
e(y + 1)

(Jeffrey, 1976), the intermediate one corresponds to ¢, = 0.4, and the upper one
corresponds to ¢, = 0.8.
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flow, a preliminary step for developing the relativistic theory of steady
supersonic flow.

5.6. General properties of isentropic flow

In the case of isentropic flow, S = const., the momentum conservation
equation (2.10) can be written as

WV, + bV, In f = 0 (5.95)
since d
df =Tds+<2.
p

Equation (5.95) admits an elegant geometric interpretation (Lich-
nerowicz, 1955).

PROPOSITION 5.3.  The flow lines defined by
dx* -
ds

u'Vut + h*V,In f =0

are the geodesics of the metric §,, = f*g,,.

Fig. 5.7. Critical time for a polytropic fluid with y=4/3 in relativistic fluid
dynamics. The lower curve corresponds to ¢, = 0.4; the intermediate one to c, = 0.8.
The upper curve corresponds to a barotropic fluid with y =4/3. The quantities
plotted are defined as in Fig. 5.5.
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Furthermore equation (5.95) is equivalent to
¢*V,cp=0, (5.96)

where c, = fu, and V is the Riemannian connection of the metric v

Proof . The Christoffel symbols of the metric §,, = f?g,, are

1
at;v = rat;v +?(6at;f.v + 6:]’.13 - gﬂvgauf,")’

where I'j, are the Christoffel symbols of g,,.
Therefore,

uVug=—kug, k=u*nf),

and the flow lines are geodesics.
Furthermore,

Vocp = fur{Va(fug)}
= fu{fVus + ugV,f}
=f2u°‘Vau,, + futugf,

=—f? uTGf,auﬂ + futugf,=0. QE.D.

The relativistic vorticity tensor Q,, is defined by
Qu5=Vocp— Ve, (597
Let @ be the 1-form
w=c,dx"
Then Q,4 can also be written as
Q=do.

In the Newtonian limit, Q,; reduces to the usual vorticity tensor. In fact,
f=1+4+¢+ p/p and in the Newtonian limit we can set f = 1.
Since §,, = f?g,,, one has
gr=r"*g"
and therefore
g‘“‘”cac,, =—1 (5.98)
It follows that

Ve, =0. (5.99)
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Then, from (5.96), one has
c*Q,;=0. (5.100)

It can be proved that Q,; satisfies the relativistic analog of the Helmoltz
theorem (Lichnerowicz, 1955, 1967), which in local coordinates is written,

C“V“Qaﬂ + (Vacu)Quﬂ + (Vﬂcu)Qau = 0

The flow is said to be irrotational if Q =0. In this case, in a simply
connected domain W of .#, there exists a function 6 € (W), the potential
function, such that

Cy=—.
0x*

In this case equation (5.98) can be written

do do
axawgaﬂ + fz =0. (5101)

Furthermore, the continuity equation
Vipu*) =0

gives

with f given by (5.101) and p as a function of f through the state
equation.

In the next section we shall consider a particular example of isentropic
and irrotational flow: one dimensional unsteady isentropic flow.

5.7. Unsteady one dimensional and isentropic flow in special relativity

For one dimensional motion we have, in Minkowski coordinates (¢, x, y, z),
u=T(1,v,0,0),

and the motion occurs on the x-axis.
It is easy to see that Q5 =0. In fact, Q, = Q43 =Q,3;=Q,, =Q,;; =0.
Furthermore, from (5.100) it follows that

MOQOtg + ulﬂw = 0,

whence Q,, = 0. Therefore the flow is irrotational.
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Equation (5.101) then can be written

fP—al+0l=0, (5.102)
where

o, =—fI, o,=fT0

Now we apply the hodograph method (Liang, 1977a).
We perform a Legendre transformation by introducing the function y

x=0— fxoI' + ftI. (5.103)
We have
dy=T(t—xv)d f + 3f(tv — x)dv.

By introducing the new variable

i
t=%ln< +”>, (5.104)

1—v
dr=T?dv, v=tanht, I =cosht, hence

dy =(tcosht— xsinht)d f + f(t sinh 7 — x cosh 7)dz.

Therefore q
t =? (x,f cosht — x,sinh7),
1 .
X = ? (xysinht —x cosh1).
The mass conservation equation is

0(pT) + 0 (pTv)=0. (5.105)
By expressing it in terms of the variables (f, 7) we finally obtain

csszXff+fo_Xn=09 (5.106)

which is a linear equation.
Sometimes it is more convenient to use the variable v=1In f. Then
equation (5.106) reads

2w + (1=, — % =0. (5.107)

Note that for a barotropic fluid ¢, = constant and the latter equation is very
simple to solve (Liang, 1977a).

In this way the problem of determining the isentropic one dimensional
flow corresponding to given initial and boundary conditions is reduced to
an initial-boundary value problem for a linear equation. However, the
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applicability of the method islimited by the fact that expressing the physical
initial-boundary conditions in terms of the variables v, 7, and y is not an
easy task.

In the next section we shall treat another example of isentropic
irrotational flow of great physical interest, the case of stationary potential
flow in two dimensions.

5.8. Stationary potential two dimensional flow in special relativity

A flow is said to be potential if it is isentropic, S = constant, and irrotational,
Q,,=0.

In special relativity a flow is stationary if, in an inertial system (x', ¢), all
the physical quantities are independent of time ¢.

Let u*=T(1,v,0,,03) be the four-velocity in this coordinate system.
Then for a steady potential flow the requirement Q,; = 0 yields

fT'=f,=const, (5.108)
with f, the value of f at the stagnation point (v=0) and
Ov;—0w; =0, (5.109)

which states that the vector field v=(v,,v,,0,) is irrotational in R3.
Equation (5.108) represents the relativistic Bernoulli theorem. In the
Newtonian limit it is easily seen to reduce to

i +e+ P_ const.
p

For stationary flow equation (5.95) reads
I'v:0(Tv) + 0;In f + Tvw,0;In f =0.
By contracting with v;, using the thermodynamic relationship

2
ar L ap,

which holds for isentropic flow and the mass conservation equation,
yields

ciz vi(v,0(T'v;)) = 0i(T'w,). (5.110)

S

In the case of two dimensional flow, v3 =0, v; =v,, v, =v,, equations
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(5.109) and (5.110) yield, after some manipulations,

ov, ov, ov ov
M)+ M oM, —— M, Py ./%2—1
( )a + oy =+ M Y o +( )ay
_%4_603’:
dy ox
where
o, [o,
%x_m, e%}’_Iq‘fscs

135

=0, (5.111a)

(5.111b)

are the proper Mach numbers for flows in the x and y directions, with

r,=(1—-c) "2

The system (5.111a)—-(5.111b) can be written in the form (Ko6nigl, 1980)

&°0.U + .dlayU =0,
where

is the field vector and /%, &/! are given by

d():(./%ﬁ—l, ./%x.///y> M:(.///./% ./%2—1>
0

1 -1
It is easily seen that for supersonic flow
M= M+ ME>1

the system (5.111) is hyperbolic.
The characteristic curves € ., are given by

dy )

=4y,
dx *
where

lli=

— MM, TF (M= 1)1

1— 4?2

(5.112)

(5.113)

Then the system (5.11) can be written in characteristic form as

dv,\ MM, TF (M= 1)
do, /. 1—.u? ’

(5.114)

where ¢, are the characteristics in the hodograph plane (v,, v,).
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It is easy to check the orthogonality relations between the ¥, and ¢_
and between the ¥_ and ¢, families of characteristics,

<ﬂ> <%> =—-1 (5.115)
dx /o, \dv. /.,

By introducing polar coordinates in the hodograph space (v,,v,);
v, =vcosY, v,=vsinY, and also the relativistic mach angle v defined by

1
sinv=j, O<v< A, (5.116)
equation (5.112) becomes
d
<_y> =tan(9 +v). (5117
dx /g,

From equations (5.117) and (5.115) it follows that the normal to the
¢_(¢,) characteristic lies at an angle v(— v) with respect to the velocity
vector v.

Also, equation (5.114) can be written

d
(dd),, = iju(e/%z - 172, (5.118)

which allows a ready determination of the Riemann invariants, because
the relationship between .# and v is provided by the Bernoulli equation
(5.108) and the state equation.

For a relativistic gas we must use the Synge state equations (2.22)—(2.23).
Then it is convenient to express f and ¢, as a function of the variable
z=m/kgT and use equation (5.108) in order to express v as a function of
z. However, the final integral must be computed numerically. It is possible
to obtain analytical results in the nonrelativistic and ultrarelativistic limits.
In the ultrarelativistic limit we have

ct=

W=

and equation (5.118) yields for the Riemann invariants

J,=8F E(AH)=const, (5.119)
where

2 1\/2
E(#)= \/garctan <M~321> — arctan (.42 — 1)12, (5.120)

In the nonrelativistic limit,

5
f—G(x):1+2~z
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and from (5.108) it follows that

where ¢ is the speed of sound at the stagnation point (v = 0), and equation
(5.120) then yields

J, =98 7F E(#)=const, (5.121)

where
2 _

2
%—)>1 — arctan (4% — 1)V/2, (5.122)

E(#)= 2arctan< 2

By employing standard methods of classical fluid dynamics (Landau
and Lifshitz, 1959a) one can derive the relativistic analogs of the Chaplygin
and the Euler—-Tricomi equations (Konigl, 1980).

The theory developed in this section could be used in order to analyze
shock formation from simple waves in relativistic steady supersonic flow.
Applications could be envisaged to the problem of head-on collisions of
heavy ions (Sobel et al., 1975; Clare and Strottman, 1986) and to several
astrophysical problems where relativistic supersonic flow might occur
(stellar winds, accretion onto neutron stars and black holes, jets in
extragalactic radio sources).

In many situations magnetic fields cannot be neglected and one needs
a theory of relativistic magnetohydrodynamical simple waves. This will
be the subject of the next section.

5.9. Simple waves in relativistic magneto-fluid dynamics

We introduce Minkowski coordinates (x!, x2, x>, t) in Minkowski space ..
Then the Maxwell equations

V., (u*b? — b*uf) =0

yield, for one dimensional flow, x = x!,

0. (u'b® —u’b)=0,
0,u’b* —u'b®) =0,
whence
u®bh! —u'b®=J, = const., (5.123)

which is a first integral of one dimensional flow.
By writing

u'=I(1,v,0,v,), (5.124)
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from u,b* =0 it follows that
B'=v.b. +v,b,+0vb,
and J, can be written as
J1 =T{(1 = @b, — v.0,b, ~ v,0,b.).

In the nonrelativistic limit J, ~ b, which is an integral of motion for
the relativistic one dimensional flow.
In order to discuss simple waves we recall that the field vector is

u
U= b
p
S
and the characteristic equation is
a’A*N,=0, (5.125)

where
a=up,, A=Ea®>— B

N, =nle,— 1)a* — (n + ¢,|b|*)a*G + B*G,
G=g"¢.0, B=b'g,
For the phase ¢ we have ¢ = ¢(t, x), hence
a=T(,—1), B=b,—°, G=1-12 (5.126)

where po= — 4, ¢, =1.
First of all, we treat the case of magnetoacoustic simple waves. We
distinguish two cases:

(i) e,>1.

A material wave can coincide with an Alfvén wave iff a = 0 is a solution to
A =0, which implies, because E >0, B=0. Similarly, a material wave can
coincide with a magnetoacoustic wave iff B>G = 0, which implies (since G > 0
under the assumption ¢, <1) B=0.

In the following (except when stated otherwise) we shall assume that B # 0,
and in this way we avoid the cases when a material wave can coincide with
an Alfvén or a magnetoacoustic wave.

Also, an Alfvén wave can coincide with a magnetoacoustic wave iff 4 =0
is a solution to N, =0, which implies

A=a?-G|b)2=0.

Therefore, in order to exclude this case, we shall also assume that
a®> — G|b|? #0.
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We shall impose the conditions B #0, a*> — G|b|? #0 at some given initial
point and by continuity they will hold in a neighorhood of such a point. The
extent of this neighborhood can be ascertained only by the integration of the
full set of equations.

Under the above assumptions it has been shown (Section 2.4) that the
equation N, =0 admits four real and distinct roots for A(|1] < 1).

The corresponding right eigenvectors are given by equation (2.96).

(ii) e, =1.

In this case N, = — AG and since we exclude Alfvén waves we must have
G =0. The corresponding right eigenvectors are formally the same as in the
previous case.

In both cases one has the obvious Riemann invariant
Jo =S =const.

and by taking p as an independent variable the equations defining
magnetoacoustic simple waves are

du® d*
O " ECA G-127)
dba da+4

From the above equations the following results of general character
can be obtained (Anile and Muscato, 1988).

PROPOSITION 5.4. Under the assumption B#0, A#0, and e,>1 the
quantity |b|? is an increasing function of p for fast magnetoacoustic simple
waves, whereas it is a decreasing function of p for slow ones.

Proof . It is easy to show, from equations (5.127)—(5.128), that

1d|p)* ., o
3 dp = e, |b|*/n — B*/na*. (5.129)

Let vy be the normal speed of propagation, defined as in equation (2.44).
Then (5.129) can be written as:

1dp)2
5 dp = (&,p2 — (1 — b). (5.130)

Under the above assumptions, we have 0<uvy, <(e,) V2 <vg, <1,
where vy, v, are the slow and fast magnetoacoustic speeds, respectively,
as defined in Proposition 2.4. Hence the statement follows. QED.
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Remark 1. For ¢, =1, for the root corresponding to vy, =1, we obtain
|b|* — 2p = constant.

Remark 2. We notice that for a fast magnetoacoustic wave A > 0, whereas
for a slow one A <0. In fact,

A=E(@* + G)(vi — vi,),

where vy, is the local Alfvén speed, satisfying vy, < vg, < vg,.

Remark 3. Let q=p+41|b|> be the total pressure (gas pressure +
magnetic pressure). Then, from equation (5.130),

dg _vi(e,—1)
dp  1—v}

and for e,> 1, dg/dp > 0; hence g is always a monotonically increasing
function of p.

Under the assumptions a # 0, B # 0, we shall consider solutions with
a stagnation point, where v, =v,=v, =0 at a given pressure p,. Hence,
a(po) = — Apo), B(po) = b.(py), and therefore a and B will maintain their
initial signs.

One can always choose the reference frame such that b (p,) >0 and
consider only progressive waves, for which 4 > 0. With these choices, one
always has a <0, B>0.

Another important result of general nature can be obtained concerning
the behavior of the eigenvalue 4 along the solution 4 = A(p).

By substituting

¢y =(—4,1,0,0)
into N, =0, we obtain
N,(U, ) =0,
which holds identically for a chosen root A = A(p). Hence

ON, dut 0N, 41 _
ou' dp = 04 dp

0,

which can be written as
Ny , ONydh_

=0, 5.131
op a4 dp ( )
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with
SN, (0N, , oN, 1 0N,
= d dere —. 132
5p < PR T Ea’A | op (5132)
In Section 4.4 it has been shown that [equation (4.74)]
SN ,/op = aX(a*K, + GK,), (5.133)
where

K, =nej, + (e, — 1)(3 — 5¢,),
K, = —ey|b|* + (¢, — 1)(3 + 2¢,|b|*/n).
We proceed with the following propositions.
PROPOSITION 5.5.  Under assumptions B # 0, a> — G|b|* #0, ¢, > 1 and the
compressibility hypothesis
W= —e,+2€,(e,—1)/n>0 (Weyl condition),
one has

O0N,/ép #0.

Proof . In equation (5.133) we substitute a? = GoZ/(1 — v§), hence

ONa O« 2IWE+3¢,e,— )]+ W|b[2 + 3¢, — 1)}.
op 1 —vg P

If 6N ,/dp =0 at some point, then v must satisfy N, = 0. Now

N,=G*Pwd/1 —v}),
where
P(v})=nle, — 1)vf — (n + €,|b|> — b2wi(1 — vd) + bA(1 — v).

The compatibility between N, = 0 and dN ,/6p = O is then the equation:

Y =X,|b|*+ X,|b* + X5 =0,
with
X, = —nW?=3e,W(e,— 1),
X, = —n*W?=3nW(e, — 1) = e, (e, — 1)* + b2[nW+ 3W(e, — 1)],
Xy=— 3112W(e;, — 1)+ b2[yW + 3e,(e, — D)1MW + 3(e, — 1)?2].
From assumption B #0, a®> — G|b|* #0 it follows that b> <|b|? and

by using this inequality, after some manipulations, we get

Y < =3(e,— YW ([(e, — 1)|b]* —2]* <O. QED.
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PROPOSITION 5.6.  Under assumptions B #0, a*> — G|b|* #0, ¢, > 1 and the
compressibility hypothesis W > 0, one has
di

>0
dp<

for progressive and retrograde waves, respectively.

Proof. Under our hypothesis the roots of N, =0 are all distinct, hence
ON /0L #0.

It follows that dN,/04 has the same sign as at the stagnation point
Po,Vx =0, =0, =0. A simple calculation shows that:

INal' _ 4 240l + €, b]* + B?) — de, EB?]L
A po
where
T ( + €,|b|* + BY) + [(n — €,|b|* + B?) — 4E¢,B*]"/?
0 2Ee, v

The choice of the sign + corresponds to fast and slow magnetoacoustic
waves, respectively. Furthermore, since we shall deal with progressive
waves, 4, > 0.

It follows that 0N ,/0A is positive for fast magnetoacoustic waves, and
negative for slow ones. Because dN,/dp # 0, it follows that N ,/dp has
the same sign at the stagnation point.

One finds, after lengthy calculations, that

1 (6N
E( 6p“> ={WI|b|? +3(e, — 1) — A2[EW + 3¢€,(€, — 1)1},,-
po
It can be seen that the sign of (6N ,/dp),,, is negative for the fast magneto-
acoustic waves and positive for the slow ones. Then the statement follows
from

di/dp= — (6N ,/6p)/(ON,/67) > O. Q.ED.

Remarks. For e, =1,from (5.133), one has 6N ,/ép = 0, which corresponds
to the exceptional case.

Equations (5.127)—(5.128) can be written explicitly as follows. In the
case ¢,>1

d(To,)

=a, v, +a;/a+ayb, (5.134a)
dp
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A2 o To, + b, (5.134b)
dp
UL (5.134c)
dp
‘;b X _ . Tv, + fb, — (¢, — 1)Ba?/GA, (5.134d)
p
96 _ BT, + Bob, (5.134¢)
dp
b: _ g v, + p,b., (5.134f)
dp

where
a, = —a*(e, — 1)/AG, a,=aB(e,— 1)/n4,
B, = B(x, —1/n)/a, B,=e,/n+ Ba,/a.

In the case e, =1, under assumption B#0, a>— G|b|* #0, one has

two roots A=+ 1 and equations (5.127)—(5.128) admit the following
invariants, besides J,

S~

H

2= 0y/v;,
3 =0/, F 1),

a=(~=Jb, + by)Pl/z,

[bx F (vsby + v,b, +0.b.)1%p,
v,— K, 1

— with K, K, constants.
Uy - 2D

y S~

S~

S

>

6
Now we turn our attention to the case e}, > 1. From equations (5.134)

we obtain

a2

i[r(uybz —vb)]=(e, — 1)—[I(v,b,—v,b)]. (5.135)
dp A

At the stagnation point p, we have:
[r(vybz - Uzby)]po = 0,

hence, by the uniqueness theorem for the initial value problem, equation
(5.135) yields the following invariant:

Jy=vb,—v,b,=0. (5.136)
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Similarly, it can be seen that

d (b,\ BT v,
@(zz)- b, ( %)’

whence another invariant,

Jy=bb,. (5.137)

In general, equations (5.134) are too complicated to be integrated
analytically. In the following we shall treat some special cases which can
be brought to quadratures.

First of all, we treat the case of a longitudinal magnetic field,

b,=b,=0.
From equations (5.134) we then have
v,=v,=0.
The characteristic equation N, = 0 admits the following four solutions:

Am= (05 + A)/(1 +0,4,) m=1,2,34,
where

(T1,2)= £(€) % (A34)= £ (IbI}/E)2.

The roots A;, coincide with the Alfvén waves and shall not be
considered here. The simple waves for the acoustic speed are given by the
following invariants:

J,=byT, (5.138)
1 1/2 /1/2

Jy=In <——+ U") F J—[e”] dp.
1—v, n

The invariants J, coincide with those of equation (5.27) obtained in
the case of fluid dynamics.

The other case we shall consider is when the fluid’s motion is purely
longitudinal

v,=v,=0

and the magnetic field at the stagnation point is purely transverse
b, (v=0)=0.

Then from the invariant J, it follows that b, = 0 throughout the flow,
hence b°=0 and B=0. In this case we consider the following simple
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root of N, =0, corresponding to the fast magnetoacoustic waves,

A= (v, + DAL + v,A),
with
A=+ [(n+¢,|bl*)/Ee,]"2.

From (5.134e)—(5.134f) we obtain the following invariants
e e,
J4=lnby—jldp, J5=lnbz—jldp. (5.139)
n n
Finally, equation (5.134a) gives the invariants:

Je=3In[(1 +v)/(1-v)]F E [e,(n + €,|b|?)/E]"/* dp.

For a fluid for which p = p(p,S)

jfﬂdp=lnp
n

and equation (5.139) gives

b,/p =const., b,/p=-const,
which are analogous to the corresponding nonrelativistic invariants
(Cabannes, 1970).

Remark 5. In the case b, =b,=b,=0 equations (5.134) reduce to the
purely fluid equations:

do, v, —1
dp  Tnlo.— )
do, Av,

dp (o, —4)
dv, v,

dp Tlrlo,—2)
(€, =), +[(€,— D31 —ov) 41712

4 1+ (e, — NI?

Another case of interest is when, at the stagnation point, (b,), =0. It
follows that J; = 0.
For plane polarized waves we can choose b, = v, =0, hence from the
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invariant J; we obtain
b,=vw,b,/6, 6=1—02

For the magnetoacoustic waves we have

v, A A? 12
=¥ [ﬁ + 5An(e, — 1)}
a= n(e, — 1) + AJT? ’

with
A=n+e,|b|* — (b?}T2

Finally, equations (5.134) yield, in this case,

dv, (¢,—)a®

—=-f _— (Av,— 1), 5.140
& TG (Ao, — 1) ( a)
dv, (¢,—1a’iv, (¢,—1)aB

—Z= z b, —b%), 5.140b
& i AT (. v,) ( )
W, Brof@- 10t 1[4 - 0BT,

dp a AG n n nA

From (5.140a), for the fast wave we have that because a <0 and 4> 0,
dv,/dp > 0.

Since we require a stagnation point p, at which v.(p,)=v,(p,) =0,
from equation (5.140b) and the uniqueness theorem for the initial value
problem we have v, =0, and equation (5.140c) reduces to

db, b

s

"n
which is the transverse case studied above.
The system of equations (5.134) has been integrated numerically

(Muscato, 1988b). For the sake of definiteness we choose the field linearly
polarized,

b,=0.
From the invariant J, we then have, assuming b, # 0,
v,=0.

It is convenient to write the system (5.134) in dimensionless form,
by introducing the variables

13=p/p09 szbx/']b Bz=bz/']19 ’7=’1/P0,
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A=Ea®>—LB%:, B=(1+b%)[, E=n/p,+L|b|%
61> =1b1*/J%, L =J3/pos

where p, is the initial pressure.
Therefore the system (5.134) can be written (omitting the bar)

do, (e,—1)

Fr > _r a[a*(hv; — 1)/G + LB/T'n), (5.141a)
©: =1 ora2in, /G + (b, - b0,)BLy), (5.141b)
dp AT

o 2
db, _ Br”z[u Nl b — 1B (5.141¢)
dp a AG nd- "’

Now we investigate the signs of the derivatives dv,/dp, dv,/dp, db,/dp. At
the stagnation point (v, = v, = v, = 0) we have

dv,| ale,—1) (n+ L)} —vf)+ L(1 + b))

dple A Gn ’
dv,| (¢,—1)LaB b
dp |o nA il

db,| b,
dpio n_AUfi

(epvg — v).

For fast magnetoacoustic waves a <0, 4 > 0, B > 0 and for an initial datum
b,>0,

(dv./dp)o <0, (db./dp), >0.

The sign of (dv,/dp), depends on the initial datum. For slow magneto-
acoustic waves (dv,/dp), > 0.

From equations (5.141) we see that for v, > 0, b, > 0 one has db,/dp >0,
hence b, is a monotonically increasing function of p for the fast wave.

When starting to integrate system (5.141), we calculate the four roots
Ay, A3, A3, 4, and we choose one to be followed during the integration. A
suitable algorithm ensures that we are always following the same root; the
accuracy of the numerical code has been tested against the exact solutions
previously found.

The agreement has been found to be extremely satisfactory. The results of
the calculations are plotted in Figs. 58-5.11 for various values of the
parameter L.
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Fig. 5.8a. Progressive fast magnetoacoustic simple waves, v, as a function of the
parameter z=m/kgT in the ultrarelativistic region, corresponding to an initial
propagation speed (at the stagnation point) 4, = 0.57, for the values L = 1 and 100
of the parameter L =J?}/p,. The two curves (L=1 and L =100) graphically
coincide.
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Fig. 5.8c. Same asin Fig. 5.8a but with b, as a function of the parameter z for L= 1

and L =100 (the two curves graphically coincide).
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04}

Fig. 59a. Progressive fast magnetoacoustic simple waves, v, as a function of the
parameter z in the intermediate regime for the values L = 1 and L = 100. The initial
propagation speed is 1, = 0.94.
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Fig. 5.9b. Same as in Fig. 5.9a but v, as a function of the parameter z for L= 1 and
L=100.
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Fig. 5.9c. Same as in Fig. 5.9a but b, as a function of the parameter z for L=1 and
L=100.
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Fig. 5.10a. Progressive slow magnetoacoustic simple waves, v, as a function of the
parameter z in the intermediate relativistic regime for the values L =1 and L =100
(the two curves graphically coincide). The initial propagation speed is 4, =0.18.
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Fig. 5.10b. Same as in Fig. 5.10a but with v, as a function of the parameter z, for
L=1 and L= 100 (the two curves graphically coincide).
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Fig. 5.10c. Same as in Fig. 5.10a but with b, as a function of the parameter z for
L=1 and L=100.
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Fig. 5.11a. Progressive fast magnetoacoustic simple wave, v, as a function of the
parameter z in the nonrelativistic regime (z > 1) for the values L =1 and L =100 (in
the Figs. 5.11a-5.11c¢ the two curves graphically coincide). The initial propagation
speed is 1, =0.99.

—.16F+

VX
T L=1and L =100
—.24t

—.40 1 L
1000 1800

2600 3400 4200



5. Relativistic simple waves 153

Fig. 5.11b. Same as in Fig. 5.11a but with v, as a function of the parameter z for
L=1 and L=100.
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Fig. 5.11c. Same as in Fig. 5.11a but with b, as a function of the parameter z for L
=1and L=100.
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Notice that the velocity v, is not a monotone function of z, at striking
variance with the nonrelativistic results and with the relativistic case with
zero magnetic field.

A similar result is found for the ultrarelativistic state equation (e = 3p)
but in this case for the component v, (Muscato, 1987).

This phenomenon is peculiar of the relativistic regime and can be
explained as follows. In a relativistic framework one has the limitation

2 +02<1

for the speeds v,,v, Therefore, v, and v, cannot both be monotone
functions of p, otherwise the above inequality would be violated. It follows
that at least one of the variables v, or v, must show a nonmonotone
behavior. This phenomenon could have important consequences for the
relativistic MFD Riemann problem.

The critical time for breaking can also be computed from equations
(5.10)—(5.10") (Muscato, 1988a) and the results are plotted in Figs. 5.12—
5.13.

Finally, we investigate Alfvén simple waves.

Because Alfvén waves correspond to multiple roots of the characteristic
equation, the methods employed in the previous sections are not directly
applicable.

In this case it is convenient to resort to a general method due to Boillat
(1982a). We start with the conservation equations

0,/**=0, A=0,1,2,...,8, (5.142)
with
f*= (T, pu®, u*b* — ufb*)".

We look for one dimensional solutions of the kind
fa = fa((P)»

with ¢ = x — (o).
The equations (5.142) yield

1o @S+ =0
Now, in Section 4.4 we have seen that the Alfvén waves are exceptional,
di/de =0.
Hence, we obtain the following invariants:

fA—2f%=const, A=0,1,2,...,8. (5.143)
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Fig. 5.12. Barotropic RMFD with y = 4/3. Plot of (T) versus (v). The lower curve
corresponds to W =0, the intermediate one to W =10, and the upper one to
W =100.
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Fig. 5.13. Polytropic RMFD and nonrelativistic MFD with y = 5/3, ¢ = 0.4. Plot of
(T) versus (v). The lower curve corresponds to W =1 and the intermediate and
upper ones to W = 10, 100, respectively.
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From these we obtain, besides the already known invariants J, and S,
J,=1b%
Jy

Js= 4=~ g o

Ja=b,— Bl'v/a,
jS = bz - Brvz/a9

Je =D,
T, = b0 — Ab°,
T, =T(v, — A,

which correspond closely to the nonrelativistic analogs (Cabannes, 1970).

The solutions which have been found in this section could be very useful
for checking numerical codes for the full set of partial differential equations
of relativistic magneto-fluid dynamics (Sloan and Smarr, 1986).
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Relativistic geometrical optics

6.0. Introduction

In the previous chapters we have studied waves which can be represented
either as exact solutions of the field equations (as in the case of simple
waves) or as propagating surfaces of discontinuities, for which exact trans-
port laws can be obtained. These classes of waves, although very important
for testing the mathematical structure of the theory, have a limited range
of applicability. In particular, simple waves are restricted to one
dimensional propagation into a constant state whereas propagating
surfaces can model only impulsive waves. This leaves out the vast class of
harmonic waves propagating into an arbitrary nonuniform state, which
comprises most of the interesting applications. In order to treat the latter
case it is necessary, in general, to resort to perturbation methods. Most
of the perturbation methods used for this purpose are based on the
so-called geometrical optics approximation, or variants thereof such as
the high-frequency expansion or the method of multiple scales.

The idea underlying these methods is that there are at least two widely
different length (or time) scales in the problem, the length L characteristic
of the variation of the background state into which the wave is propagating,
and the mean wavelength 1 of the wavetrain, with the ordering A « L.
One then introduces a parameter ¢ = /L into the problem (usually through
the appearance of one or several rapidly varying phase functions and also
through other stretched variables, depending on ¢) and seeks asymptotic
solutions of the field equations as appropriate power series in &. One finds
that one can define a class of curves, the rays along which the various
terms of the asymptotic expansion propagate according to transport laws.

It is apparent that the asymptotic expansions which are used are valid
only in a restricted class of coordinates (in order to convince oneself of
this it suffices to think of coordinate transformations depending on the
parameter € which could destroy the ordering of the asymptotic expansion).
However, this is not a hindrance to using these methods for relativistic
problems because the existence of a restricted class of coordinates enjoying
a definite set of properties is in itself an invariant statement. However, in



158 Relativistic fluids and magneto-fluids

concrete examples it may be very difficult to prove the existence of such
a class of preferred coordinates (de Arajuro, 1986).

In this chapter we shall introduce the basic concepts underlying the
perturbation methods referred to as the high-frequency expansion and the
two-timing methods, within a relativistic framework. First we shall
expound the high-frequency expansion method by applying it to Maxwell’s
equations in vacuo and in a linear isotropic medium, in general relativity
(notice that these equations are linear). Then we shall introduce the two-
timing method both in the linear and in the weakly nonlinear case by
applying it to Maxwell’s equations in the presence of a cold plasma. The
high-frequency expansion method in a nonlinear framework (also called
the method of asymptotic waves) will be the subject of the next chapter.

The theory developed in this chapter is motivated by applications to
laboratory plasma physics and astrophysics. The interaction of an electro-
magnetic wave with a plasma (a topic treated in Sections 6.3 and 6.4 in
the cold plasma approximation and under a simplified hypothesis) is
definitely a relativistic problem and therefore should be treated in a co-
variant framework (although for some specific problems it might be more
convenient to use a noncovariant formalism; Shukla et al.,, 1986). The
covariant theory of the interaction of an electromagnetic wave with a
plasma could be relevant for several laboratory plasma problems (for
example, the stimulated emission by intense relativistic electron beams;
Miller, 1985) and for diverse astrophysical problems. One of the most
interesting applications to fundamental astrophysical theory is in the deri-
vation of the radiative transfer equation. When considering the transfer
of radiation in cosmology, as in the case of the microwave background
radiation or the light emitted from quasars, or the radiation emitted from
nearby a neutron star or black hole, one needs to consider the relativistic
radiative transfer equation (Ellis, 1971; Weinberg, 1972; Thorne, 1981). In
its turn the relativistic radiative transfer equation can be obtained either
from relativistic kinetic theory (starting from the relativistic Boltzmann
equation for photons; Ehlers, 1971) or from relativistic geometrical optics
(Ellis, 1971; Anile and Breuer, 1974; Anile, 1976) or, precisely, from the
propagation laws for the amplitude and polarization of the wave.

The latter approach is more satisfactory when dealing with polarized
radiation or with radiation propagating through a dispersive medium. In
fact, in the kinetic approach, in these cases one has to postulate the
propagation laws for the photons (Bicak and Hadrava, 1975) or resort to
geometrical optics itself. Instead, as will be seen in Sections 6.2 and 6.3,
relativistic geometrical optics is capable of deducing the propagation laws
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for the amplitude and polarization directly from Maxwell’s equations.

The plan of the chapter is the following.

In Section 6.1 we investigate high-frequency waves for Maxwell’s equa-
tions in vacuo in an arbitrary space-time, following an earlier treatment
by Ehlers (1967). In this way we prove that, to the main order in &, the
electromagnetic field satisfies the laws of geometrical optics in general
relativity, that is, the area-intensity law and the parallel propagation law
for the polarization (Synge, 1960).

In Section 6.2, following earlier treatments by Ehlers (1967) and Anile
and Moschetti (1979), we investigate high-frequency waves for Maxwell’s
equations in a linear isotropic refractive medium. Proceeding as in the
previous section, we obtain the corresponding laws of geometrical optics,
that is, the modified area-intensity law (taking into account the refractive
index) and the modified propagation law (differing from parallel propaga-
tion by a term representing the interaction of the polarization with the
vorticity of the medium).

In Section 6.3 we deal with the two-timing method. This is necessary
if one wants to incorporate dispersive effects, as in the case of waves in
plasmas. We discuss linear locally plane electromagnetic waves propagat-
ing in a cold relativistic plasma and base our treatment on that of Anile
and Pantano (1977, 1979). Further extensions of the theory to cases where
the plasma is magnetized can be found in the articles by Breuer and Ehlers
(1980, 1981). By applying the two-timing method we are able to obtain
the laws of geometrical optics in general relativistic dispersive media, which
had been postulated by Synge (1960), without deriving them from
Maxwell’s equations. Moreover, we obtain also a propagation law for the
polarization which differs from the parallel propagation law by a term
representing the interaction with the plasma vorticity. Such a term is
analogous to that occurring in the case of propagation in a refractive
medium.

In Section 6.4 we consider the same problem but modify the perturbation
method (by introducing several phase functions) in order to treat the
weakly nonlinear modulation of a locally plane harmonic wave. The
calculations are rather lengthy and the final results are the following: (i)
the wave complex amplitude satisfies a propagation law along the rays
which is of the form of a generalized nonlinear Schrédinger equation; (ii)
the polarization vector of the wave satisfies the same transport law as in
the linear case. We remark that in all cases treated in this chapter the
only way a background gravitational field can affect propagating radiation
is via its effect on the rays (they can be bent or focussed by space-time
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curvature). This is obviously consistent with the usual interpretation of
the equivalence principle which in the approximation we are dealing with
(geometrical optics) amounts to stating that a background gravitational
field can have no local effect.

6.1. Geometrical optics in general relativity

Maxwell’s equations in vacuo are equations (4.81)~(4.82) in the absence of
charges, J*=0, and they are written

(VGFﬂY + VﬂF)'al + VyFazﬂ = 0)7 (61)
V,F* =0, 62)

where F,, is the electromagnetic field tensor.
A high-frequency wave is defined by the following formal asymptotic
expansion

Fo _Re{e""“’ ngow"'(l;")w} (6.3)
where ¢(x) is a real function to be determined, called the phase, and w is a
real parameter, w > 0 (related to the “frequency” of the wave).

Obviously this expansion is meaningful only in a selected class of
coordinate systems.

We substitute the expansion (6.3) into equations (6.1)—(6.2) and proceed
by equating to zero termwise the coefficients of the resulting formal series
in 1/w.

Then, to the zeroth order, we obtain, writing [, =V,0,

LE g+l Eut ], F =0, (6.4a)
I, F* =0. (6.4b)

*(0)
To the nth order we have

s F gyt by F ot ly Flog) +VoFg, +VoF o+ V,Foy =0, (652)

(n+1) n+1’”

il, F*%+V, F*=0. (6.5b)

(n+1) (n)

From (6.4a)—(6.4b), because (I(;") *f 2 (), we obtain the compatibility relation

11 =0. (6.6)
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This equation shows that the hypersurfaces of constant phase are null
hypersurfaces (coinciding with the characteristic hypersurfaces), in analogy
with the weak discontinuity case (Section 4.5).

Let n* be a vector such that n*l, = 1. Then by contracting (6.4a) with
n®, we see that (I(;") o has the following expression
Fo o=y ls— 1V, 6.7
(O)aﬂ ‘//az B a‘//ﬂ ( )
where ,, which is determined up to the “gauge” transformation y, -y, * 41,
(AeR), is such that

v l*=0.

This result is also analogous to equation (4.100) of the weak discontinuity

case.
The rays are introduced as the bicharacteristic curves, that is, x* = x%(t)

such that
dx®

dr
To the first order, equations (6.5a)—(6.5b) read

i(la(ll:)ﬂy + lﬂ(f)yaz + ly(Faﬂ) + la(Vﬂ‘//y - Vy‘//ﬂ) + lﬂ(Vy‘//a - Va‘//y)

1)

I, (6.8)

+1(V¥,— Vai,) =0. (6.9a)
il, F B (V)P + YoV 1P — (VWP — PV P =0, (6.9b)

Let (‘{’)ﬂ = Fopl', Zy =F(Vals = Vyibo).
Then equation (6.9a) by contraction with [* yields,

iYg+Zg=klg, kreal scalar, (6.10)
)

PV g+ VIt — YVl — (VY )+ Zy — klg = 0.
Now Z; ="V s+ y*V,l,, and therefore
20V 5+ gV I+ Kl =0, 6.11)

with k' = — k — V y"

Equation (6.11) provides transport equations for both the amplitude and
the polarization of the wave.

In fact, by contracting with the complex conjugate ¥/, we obtain

PV g2+ y|?V, =0, (6.12)

whence

which is the transport equation for the amplitude.
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This equation can also be written as a conservation law,
V. (#¢|?) =0. (6.13)

The transport equation for the polarization can be obtained as
follows.

Let u* be the four-velocity of an arbitrary observer, u,u* = —1. The
frequency Q of the wave relative to this observer is defined by (Synge, 1960)
Q=1u~

Let us introduce, at least locally, an orthonormal tetrad

us v e® e®
e, ‘1)@ g

where v* is the wave’s propagation unit vector in the observer’s rest frame,

1
vi=——(I"+ Qu°),
|€2]
and (e « (zze“ are two spacelike unit vectors, orthogonal to each other
H @
and to u*, v

By exploiting the “gauge” freedom y,— ¥, + Al, we can always make
Yy ut=0. 6.14)
It follows that ¥, lies in the two-space spanned by (elz)“, (ezz)“, hence we can
write
yr=1yle, (6.15)
where e” is the polarization vector,

e*=cosfe*+sinde?, (6.16)
M )

0 being the polarization angle.
At each point, (elz)“, (g)“ are defined up to an orthogonal trans-

formation. We exploit this arbitrariness in the definition of (elz)“, (g)’ by

choosing them to satisfy

aju =
(zzz) l Vu(%a 0. 6.17)

Then from (6.11), (6.12), and (6.17) it follows that
*v,0=0, (6.18)
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that is, the polarization angle with respect to the basis e, e*is propagated
o @

in a parallel manner.
The conservation law (6.13) has a simple geometric and physical
interpretation. Let X be the null hypersurface given by

@(x*) = c = const.

Let # be a bicharacteristic tube and ¢ a cross section of such a tube
and denote by do its area element. Then one can state the following
theorem.

THEOREM 6.1. For all cross sections one has

J |¥|% do = const.

Proof. We choose coordinates adapted to Z, x° = ¢, x' are coordinates on
. Furthermore, we specialize the coordinates x’ such that

I*=(0,1,0,0).
From the conditions I, =(1,0,0,0) and [,I* =0 we obtain
gor=1 91:=0, g4,=0, A=23

for the metric coefficients. In these coordinates the transport equation (6.13)
is written

0
i (VIalp1) =0,

where
g =detyg,,

SV = F(x?,x3).

A cross section of a tube of rays is given by

x! = h(x2, x3).

whence

Now the line element in these coordinates is
ds? = g4o(dx®)? + 2dx%dx! + 2g,dx®dx* + g ,pdx*dxE.
Therefore,

ds?|y =g pdx* dx®?
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and it is easy to check that
lgl = |det g 4p|.
It follows that

J [¥|®de = J [¥|?|gldx2dx® = JF(xz, x3)dx2 dx> = const. Q.E.D.

This result has the following physical meaning. The energy-momentum
tensor for the electromagnetic field in vacuo is

1
T = —(F*“FF" _ Lg% F F"), 6.19
P ( 29" F, F*) (6.19)
By substituting (6.3) into (6.19) we obtain a formal series in 1/w. Now
we average out to zero the rapidly oscillating terms containing factors of
the kind e~ 2*¢, according to the definition

2n/0

<Tazﬂ> =2J‘ T“‘”dq).
2n Jo
This averaging is to be interpreted as “ensemble” averaging. Physically
it corresponds to averaging over a time scale which is long compared to
the period of the wave, but much shorter than the typical time scale of
change of the wave’s amplitude and of the background gravitational field.
The averaged zeroth order energy-momentum tensor is

(T =o

2[=#, 6.20
I S 7 (6.20)

It follows that the averaged energy-density as measured by the observer
with four-velocity u* is

1
E>=( T =—|y|2Q? 6.21
(B> =( T uuy =g W1, (621)
whereas the averaged energy-flux in the wave’s propagation direction v is
1
OY=¢ T - 2002
(@) =( Ty = g W0 (622)

Therefore, for all observers measuring the same frequency Q = constant,
Theorem 6.1 expresses that

J <E>da=j {®>do = const.

for all cross sections of a bicharacteristic tube.
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This is the standard area-intensity law of general relativistic geometrical
optics (Friedlander, 1975).

The higher order corrections to the geometrical optics field F* as well
(0)
as the resulting modifications of the area-intensity law have been studied

by Anile (1976) using the spinor formalism.

The propagation law (6.13) for the amplitude and (6.18) for the
polarization are at the basis of the derivation of the relativistic radiative
transfer equation in vacuo (Ellis, 1971; Anile and Breuer, 1974; Anile,
1976). In the next section we shall treat geometrical optics for radiation
propagating through a refractive medium.

6.2 Geometrical optics in general relativistic refractive media

Maxwell’s equations in current-free refractive media are equations (2.46)—
(2.47) with J*=0, and they read

VoFgy+VgF,, +V F =0, (6.23)
vV ¥ =0, (6.24)

where F4, 1,4 are the electromagnetic field tensor and induction tensor,
respectively.

As is usual in many applications we shall assume a linear and isotropic
refractive medium. The constitutive relations between F,; and I, are
equations (2.50)—(2.51) and can be written in the form (Pichon, 1965)

Iaﬂ = %X:EFM\U (625)
with the susceptibility tensor y4; given by
ny 1 B v yrymy 1_N2 v, i v, 1 n,,v v
Xap =E(ga9ﬂ —959.) — F (gau'ug — ggutu, — gau’ug + ghu'u,),

(6.26)
where N is the refractive index,
N2 =j(1 + 4nx),

u*is the medium’s four-velocity, £ is the magnetic permeability, and x is the
electric susceptibility.
We look for high-frequency waves of the form

Fati:Re{eiww Z a)-n(}?;aﬂ}, (6.27a)
n=0 n
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Ig= Re{e""’“’ Z w"‘(I)a,,}. (6.27b)
n=0 n
Then, to the zeroth order, we obtain
l (Ig)ﬂ" + lﬂ(O)ya +1 (}g) 0 (6283)
I,1*f =0, (6.28b)
0)

and to he nth order

i(la(nfl)ﬂy + lﬂ(nfl) + ly fl)aﬂ) +V Fﬂy + VﬂF +V Faﬂ = 0 (6293)
il, I +V, 1 =0. (6.29b)
(n+1) (n)

From (6.28b), by using the constitutive relation (6.26) we obtain
u _ _ N2 v
I (Ig)utf (1 =N (Qu (I(;"),,v s (Ig) yu'tg) =0, (6.30)
Let Y= (Ig)a,,l“. Then equation (6.30) is rewritten
Yy + (N2 — 1)(Qu"(1(;")ﬂv — Y,u'ug) =0. (6.30")

By contracting with u it follows that, since N #0,

Yﬂuﬂ =0. (6.31)
Then, from (6.30'),
k* = 6.32
(0) gk =0, (6.32)
where
1
kv=E(lv —(N2 _ I)qu)- (6.33)

Notice that k" is tangent to X, because k', = 0. Now let n* be a vector such
that
Fn,=1.

By contracting equation (6.28a) with n* we obtain

=y l,—y,l 6.34
(O)aﬂ ‘// B ‘//ﬂ @ ( a)

with ¥, determined up to the gauge transformation

YooY, + A, LeR. (6.34b)
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Now we prove that for a nontrivial solution we must have I*l, # 0. In fact, if
I!I, =0, we can always choose the gauge transformation such that y,
satisfies

V=0,
Then, from the condition (6.31) it follows that, since Q # 0,
Y =0,

hence Y;=0. Therefore, from equation (6.30) we have ¥, =0. Having
established that [ ]*#0, we can choose ¥, by applying the gauge
transformation, such that

v, I"=0, (6.34c)
and then equation (6.31) yields
Y u*=0. (6.34d)
Finally, from (6.30') we obtain the compatibility relation

1,1
QZ

=N2—1. (6.35)

By the way in which it has been obtained it is apparent that equation
(6.35) coincides with the characteristic equation for the system of Maxwell’s
equations (6.23)—(6.26) (Pichon, 1965). It is also easy to see that

(g)aﬂ = ‘//azkﬂ - ‘/’ﬂka' (636)

To the first order, equations (6.29a)—(6.29b) give
i(la(l;"),,y + 1 F o+ ly(I;")a,,) + 1V, —V ip)

e
+ lﬂ(Vy‘//a - Vaz‘//y) + ly(Va‘//ﬂ - Vﬂ‘//a) = 09 (6373)
N2 1
m{ﬁ—ﬁjrlgmﬁw+mww—wwhm. (6.37b)

Let
= F zk*,
b=
Zﬂ = k“Val//ﬂ - kaVﬂ‘//a-
Then equation (6.37a), contracted with k% yields

iY,+2Zs=klg,
(1)



168 Relativistic fluids and magneto-fluids

with k an arbitrary scalar, which, after substitution into equation (6.37b),

gives

— 2KV P + kP + YAV P — VPk,) + (Vpo)k? — YPV ke
NZ—1
- i¥ FLuuf =0. (6.37¢c)
A o
From this equation we derive the amplitude transport law

V(¥ =0. (6.38)

The rays are the curves tangent to k* and coincide with the
bicharacteristics.
Let {ua, va, ea, ea}
1 @

be the orthonormal frame as introduced in the previous section, but with

_l“+Qu°‘
- NQ

X

Then, from equation (6.37c) one obtains the transport law for the
polarization,

L
2kV .0+ Z—w*e e =0, 6.39
Q @ @Y 0 (6.39)
where w,, is the vorticity tensor of the vector field u* defined by

(J)‘“, = h;he(Vauﬂ — Vﬂua),
with
h; = 6% + u,u,

and 0 is defined by
‘= *cos6 *sin ).
v |l//|((£13) cosO + (fzz) sin 0)
A physical interpretation of the conservation law (6.38) can be obtained
as follows.
Let us assume u* is hypersurface orthogonal and that u =dz, where ©

is a scalar function. Let X be the hypersurface ¢(x)=c, ceR, ¢, =
{xeX:7(x) = const.}. Then it is possible to prove the following result.

THEOREM 6.2. One has

1
J ENh//lzda,:const.
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Proof. Let(y°, x) be normal coordinates based on Z (Synge, 1960), which is
given by y°=0. In these coordinates

I*=(L,0,0,0),
l,=(1,0,0,0),

where L =1[,I* and the metric is given by
1 S
dSZ = z(dyo)z + gij dxl dx".
Now, on X the coordinates x’ are arbitrary. Let

t = 7(0, x%).

We choose the coordinates x' on Z in such a way that they are normal
coordinates based on the family of two-surfaces ¢t = const. On X the vector

=0t =u,——I
Wa 3 ua La

has components w, = (0, 1,0,0) and

QZ
=(0.-1-%.00),

In these coordinates the metric is
2 1 03y2 1 132 ~ i j
ds =Z(dy ) +;(dy )* + gy;dy'dy’,

with w = w,w® The metric on the two-surfaces ¢t = const. is given by
ds? = gij dyt dyj-
Also,
1
k*=—(0, QNZ,0,0).
1]

Let |§|*/? be the surface element induced on ¢, by the metric §,;. Then
(6.38) reads,

0 /1
—<7I¢I2NI§I1/2> =0,
ot\ fi
which proves the theorem. Q.E.D.

Now the Minkowski (57;)“” energy-momentum tensor for the electromag-

netic field in matter is given by equation (2.59).
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By proceeding as in the previous section we obtain, at the lowest order,

1
Ty = — |2 1°k* .
(> = g VI, (6.40)
which gives an energy-density

1
8nfi

(E)= N2Q?|y|? 6.41)

and an energy flux, in the wave’s propagation direction,

1
8nfi

(D)= NQ|y|2 (6.42)
Therefore, for all observers measuring the same frequency Q =const., one
has

E
J N do, = J ®do, = const., (6.43)

which is the general-relativistic formulation of the area-flux law of
geometrical optics in isotropic refractive media (Anile and Moschetti,
1979).

By using this law and equation (6.39) for the polarization one could
derive the transfer equation for radiation propagating through refractive
media. However, in a plasma, refractive properties are usually associated
with dispersion. In the next section we will consider a very simple example
for a dispersive medium: a cold electron fluid, which is a model of notable
interest for some astrophysical and laboratory plasma.

6.3. Electromagnetic waves in a cold relativistic plasma: linear theory

Maxwell’s equations in vacuo in the presence of charges and currents are
obtained from equation (4.81)—(4.82) and are written

Vo Fg, +VgF,,+V,Fpz=0, (6.44)
VpF* = dmpyJe, (6.45)
with u, the vacuum magnetic permeability.

We make the following assumptions for the medium (Madore, 1974):

(i) The medium consists of two noninteracting components, the ion and electron
components;
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(ii) the energy-momentum tensor for the electron component is that of a
pressureless perfect fluid (dust), i.e.,

T, = nmu,ug, (6.46)

where n, u* are the electron number density and four-velocity of the electrons;
(iii) because of the larger proton mass the ions are considered as a fixed
background.
The total current J* is given by

J*= —dne(nu® — nu?) 6.47)
where e is the electron charge (absolute value), n;, uf are the ion number density

and four-velocity, respectively.

Then to Maxwell’s equations (6.44)—(6.45) we must add the equation of
motion for the electron fluid
VT = — enF*fu,,
which is equivalent to the electron number conservation equation
V. (% =0 (6.48)

and the electron momentum equation
uwy,u u,. .

Now we linearize equations (6.44)—(6.45) and (6.48)—(6.49) around an
unperturbed state with F,; =0. Let F o s G, denote the perturbations to
the electromagnetic field, number density, and four-velocity, respectively.
Then the linearized equations give

VFp +VyF, +V,F =0, (6.50)
V F? = — Anpoe(fu® + ni®), (6.51)
V., (Aiu* 4+ ni*) =0, (6.52)
04V, + uhV 0% = — %F““uu, (6.53)
u, 0% =0, (6.54)
the latter arising from the normalization condition u,u*= —1.

Now we analyze the system (6.50)-(6.54) by using the two-timing
method (Whitham, 1974; Jeffrey and Kawahara, 1982). We assume that,
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in a selected class of coordinates (x*), the quantities F*, A, 4* are of the
following form:

. ~ 1
Fob — fob <£x“, E@(ex“)), A=A <ax“,%®(£x“)>, etc.,

with @ a function to be determined and ¢>0 a real parameter. The
unperturbed background fields g,4, 1, u* are assumed to vary on the slow
scale, that is, they are of the form

Gap = Goplex¥), n= N(ex¥), etc.
It is convenient to introduce the auxiliary variables X* =¢x*, ¢ =
1 . .
E@(ax“). For fixed ¢ >0 the X* can be interpreted as “slow” space-time

coordinates. The parameter ¢ measures the ratio of the fast length scale
to the slow one. If we write f =f(X* ¢) and put

_of -_ f
Ja= T ax” f=
then
of )
axm—sf,m+laf,
where

dp 0O

"o " ox T O
is the normal to the wavefront ¢ = const.
For the connection coefficients I';,(x* ) we have

. r;y = gfat;y’
with
= %GGJ(GM},Y + Géy,ﬂ + Gﬂy,6)9
whence I'g, = 0(e).
Henceforth we shall use a semicolon in order to indicate the covariant
derivative with respect to the slow variables X that is

-

Agp = Aup — A,

In terms of slow and fast variables equations (6.50)—(6.54) can be rewritten

LEgy+ E o+ LE g+ oF g+ B+ Fop ) =0, (6.55)
1P + eFf = — dmpge(iu + ni), (6.56)
utl 4% + edMul, + eutdl, = — %F““uu, (6.57)

L(Au* + nd®) + e(Au® + na®),, = 0. (6.58)
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A locally plane wave is defined by the following formal asymptotic
expansion (Anile and Pantano, 1977)

00

ﬂ=< Y 8“({})>exp (i),

q=0

Fet =< 2 e"ﬁ“")exp (i),
q

q=0
7 =< Y a“ﬁ“)exp(iq)).
q=0 @

Substituting into equations (6.55)—(6.58) and termwise equating to zero
the coefficients of the resulting formal power series in ¢, we obtain at the
zeroth order

I, F,,y + l,,(o)m +1 Fa,, =0, (6.59)
ilg F 4 47tu0e< Aut+n @ >= 0, (6.60)
iQ 12“‘+ F““‘u =0, (6.61)

(0) m(0)
Qn+ nl =0, (6.62)

where Q = u,l* is the local frequency of the wave relative to an observer
at rest with the medium.
For the higher orders one gets

i<la F o+l F .+l F ,,>+F,,“+Fm,,+FaM—0 (6.63)

(¢+1) (g+1) ( +1) (q) @
il, F**+ F“” + 4npge u*)=0, 6.64
B ﬂo( u+n(+1)) (6.64)
e
Q @ +atud +udl, +— F*u, =0, (6.65)
q+1)y (@ @* ma+y
iQ A +inl, 4* +(Av+na%),=0. (6.66)
(q+1) +1) @) (q)

By proceeding as in the previous section, from equation (6.59) we have
(}j‘)aﬂ = ‘//alﬂ - ‘/Iﬂla9 (667)

with y, determined up to the transformation

Yoo Yo+ A,
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Since Q =1 u*# 0 we can always choose 4 such that

Yu*=0. (6.68)

Then equations (6.60)-(6.61) are rewritten
ilg Py —il*(YPly) + 47zu0e((§)u°‘ + n(zg)“) =0, (6.69)
i et — - l// (6.70)

From equations (6.62) and (6.69)—(6.70) we obtain
4 2
(QZ —M>l 2% =0. 6.71)
m (0)
Now we assume that

0 2 dnpgein
m b

since we are not interested in electrostatic waves. Therefore we have

l,a*= = .
4'=0, Ly*=0 (6.72)

and from (6.62),

A =0. 6.73
a (6.73)

Then, from equation (6.69), because y* # 0, we have

I e drpye? n_

" -Q2 (6.74)
where Q, is the plasma frequency, which is the dispersion relation for
electromagnetic plasma waves (Stix, 1962).
Now we derive the transport equation. Equations (6.63)—(6.66) for g=0
become
i(la(ll:"),,y +IF o +1F )+ F,,m + FM + ,=0,  (6.75)

" )
il Fof F“‘” 4 =0, 6.76
l,,m + b + nuoe(nu +n(114)) (6.76)
Qa*+ arul, +uta?’, F““‘u =0, (6.77)
CO ) 0" m(l)

lQn + inl, *“+n T3 +n12)°‘ =0. (6.78)
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From equation (6.75), by contracting with [*, we obtain

i(}zaﬂ = ‘/’a;tf - ‘/’ﬂ;a + Zalti - Zﬂlan (679)

with Z, determined up to the transformation
Z,»Z,+ A,
Since %], # 0, we can choose Z, in such a way that
ZJ2=0. (6.80)
Using equation (6.80) in equations (6.76)—(6.77) and also
lﬂ‘//;pa = - ‘/’ﬂlﬂ;a = - ‘//ﬂla;[b

gives
2lﬂ‘//;.ﬂ + ‘//al,ﬂﬂ - l//,Bﬂla + Zalﬂlﬂ + 4”#08(?)““ + 47[#08"(112: = 0, (681)

a e By e Hia _ e (N [ e () —
Q(zli) +—yrul, + —yu, —— 2 "+ —Z2°Q=0. (6.82)
Using (6.82) in (6.81) gives

dnpge’n

2y + Yoty — bl — W Ul + ", — Z'u J*) =0, (6.83)

By contracting equation (6.83) with 2 we get
Plyl%+ 2l =0, (6.84)

which is the transport law for the amplitude.
Proceeding as in the previous section, we introduce the orthonormal
frame

(ua9 va9 ea9 ea)9
1y (2)

with
L P+ Qut
V' =10z _ 02
Q2 — Q2
and ¢% e®two orthonormal spacelike vectors, orthogonal to both 4* and [*
(1) @)
and such that

elte, . =0.
@ (O™
Then we can write

Y= |l//|((£13;‘ cosf + (‘23) sin ), (6.85)
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and by substituting into equation (6.83) and contracting with & we obtain
)
the polarization angle transport equation

dnpge’n

200, + e e, =0, (6.86)

S o
where w** is the electron fluid vorticity.

An alternative approach which leads to equivalent results is based on
the averaged Lagrangian formalism (Dougherty, 1970).

The propagation equation (6.84) for the amplitude can be interpreted
in terms of the area-amplitude law, at least in some cases (Moschetti,
1987). The main result which has been obtained is the derivation from
Maxwell’s equations of the propagation laws (6.84)~(6.86) for the amplitude
and polarization of an electromagnetic wave in a cold plasma. These laws
form the basis of relativistic geometrical optics in a dispersive medium.
They could be used in order to obtain the relativistic transfer equation
for polarized radiation in a dispersive medium (the effect of a background
magnetic field could easily be taken into account; Anile and Pantano,
1979; Breuer and Ehlers, 1980, 1981). In the next section we shall reconsider
the problem we have treated, trying to take into account weakly nonlinear
effects.

6.4. Electromagnetic waves in a cold relativistic plasma:
weakly nonlinear analysis

We start with equations (6.44)—(6.45) and (6.48)—(6.49), which we rewrite as

VoFp,+ VoF, +V,F =0, (6.87)
VyF* = dmpge(nuf — nu®), (6.88)
V., (nu®) =0, (6.89)
WV = — %F““uu. (6.90)

In order to study nonlinear effects it is necessary to extend the two-timing
method introduced in the latter section and to allow several scales.
Let us introduce the following quantities

X*=4¢2x* (very slow variables),

X*=¢x* (slow variables),
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and the phase functions (to be determined later)

1 -
= EN(XP), 9= O(X"),
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where ¢> 0 is a real parameter related to the slow modulation of the

waveform.

We shall assume that in a selected class of coordinates (x*) we have the

following asymptotic expansions

with the functional dependence

() S ) 50
n=m=n(X?), u*=uf=uf(X"),

(@) to (@

Fazﬂ = p=z— ° (Fazﬂ()?a9 é(u)) eXp (lp(p),

P}

@ to (g

ut=Y u*(X%EP)exp(ipy),
p=—o0 (P)

(a) to (@) “a (ﬂ) .

n= 3 (r’})(X,é )exp (ip o).
p=-w

Notice that the reality condition implies

(@) (@)
n= n, etc
» (-p

We shall also assume for the metric,
9up = gaﬂ(i )
and then, for the Christoffel symbols one has

_ 27
r:v =¢é r:v'

(691a)

(6.91b)

(6.91¢)

(6.92a)

(6.92b)

(6.92¢)

(6.92d)

It is convenient to define the covariant derivative V, with respect to the

very slow variables X° by using the quantities f:v.
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Equations (6.92b)—(6.92d) are equivalent to assuming a periodic depen-
(@) a

@, @
dence on ¢ for F 4 u* n together with suitable regularity properties.
We define the vector field [, by

d¢
=—=0,0 6.93
a axa a ( )
and denote by 0, the derivative with respect to X® and by comma
the derivative with respect to X*
In order to investigate nonlinear effects we need to keep track of the
expansion up to the third order in &. We have

50

(1)

V,F Z'l“F) 2y (ipl, F o
Fp, =€) ipl, exp (ipp) + ¢ ipl, F g4, + &¥
pr=eLiph F, p (ipp) Epj(p E g & ag(“))

3 0]
-exp (ipp) +£3Z<1pl F,,V+V F,iy

2
oF

By
e ‘gim)exp (ipg) + 0(*), (694)

\% u“=£21pl (u “exp (ipp) + €2V, u“+£22<1pl e
)

(p)

(1)
dut

+ v _ () )ex i + 83 i l (3)11 + \v} (1)“
& Fe p (ipe) %j plu’ +V, 1
a(;)“
+E0 ‘é';’v)>exp(ip<o)+ 0(*), (6.95)

(1)

0
V=L ipl n)exp(zp<p)+szv n +822<wl n +€‘"’agfl>)

(p) (p)

-exp (ipo) +£3Z<1pl n +V

(2)
on

+%3 é‘:’;)) exp (ip) + O(e*), (6.96)
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By substituting the above expansions into equations (6.87)—(6.90) we
obtain, to the first order in ¢,

1 (117) l (Ii") L (117) =0, 6.97
+ ot .

P P Y™ (6.97)

s @), (WO,
lpl,,F = —4nuge| n (u) + put, (6.98)
(0),(1) e W
I =—"u F™ 6.99
iplu* ® - m e (6.9)

QD O, (6.100)

3 3

The normalization condition

uu, = —1
up to the third order gives
) (0
u, u*=—1,
) (1)
u,u*=0,

0) (2) 1) (1)
2u u*+u u"*=0,

u u
© 3, 1) Q)
u,ut+u,u

- (6.101)

Let Q=(3)“la be the local frequency of the wave (as measured by the

. . .. O .

observer moving with the background four-velocity u *). Equations (6.97)-
(6.100) can be analyzed as in the previous section. We shall treat the
modulation of the lowest harmonic wave, p = 1. Hence, we shall put

(1) ( (

F*=0, n=0 wu*=0,

(p) (p) (p)
for |p| # 1.

From equation (6.97) we have
1)

F= :
Fao=Yuds = pol. (6.102)
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and, as in the previous section, we can always choose the gauge such that

Y, u*=0.

1) O

Then equations (6.98)—(6.99) are rewritten as

O, (1O
il —il*(yPl,) + 47zu0e< nu*+nu®
(1) (1) (1) (1)

Proceeding as in the previous section we obtain

(-0 + Qg):a}}la —o0.

We also exclude electrostatic waves and therefore we assume

Q#£Q};
and hence

Wi, =0, W=0 y,=
R (R
Equation (6.104) then yields
™,+Q)y*=0
(p)

and therefore we obtain the dispersion relation
M, +Ql=0.
Note that the above dispersion relation implies
Q> QL
To the second order in ¢, equations (6.87)—(6.90) give

(1)
1(2) ) @ ()5(1:);:
"
lp Fﬂy+lﬂF +lF >+éaaé(“)
(1) (1)
0F,  OF.,

i(u) "™ i(u) (n
B 6{“‘) »Y 6{“‘)

*

(1)

(0)(2) 0) (2)
lpl,,( )“‘”+€“‘) ) +47tu0e< 4+ u“‘n>=0,
p

B fEW

(p) (p)

(6.103)

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)
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(1)

3

u
O (0, 2,0 (0
(3) v, (?1) V u +Z<pon + ipl, u n+pEw a—‘él—))ﬂp(ipgo)=
w, (6.113)
Ju”
0 ©
(O)“V (u) n u)“z<lpl u +€(V) é(ﬂ)exp(ip(p)
(1) e © 2
550 B e+ (5
P\ (p-n " m-p “i
(1) (1) .
+y Fauu )exp(lpgo)=0. (6.114)
r (P

We shall construct the asymptotic solution such that

and this choice, on the basis of our ordering, can be interpreted as
assuming that the background plasma is unmagnetized. For p =0,
equation (6.111) is satisfied identically and equation (6.113) yields

Wev. %+ 0, We=o. 6.115)

From equation (6.114) we obtain

W, ur =0, (6.116)

which shows that the unperturbed neutral plasma moves along geodesic
lines, and from equation (6.112) we have
0@ (0) (2)
(n u)“+ u*n =0. 6.117)
(0) (0
The normalization condition (6.101), for p = 0, gives

2
© 2 e
u,ut+ l//“l// =0
o m?ay o

and by using it in conjunction with equation (6.117) we get

@ _ _‘,';’e_ v, (6.118a)
(©) m* 1) "

(2)
(0)

e_z R (6.118b)
(1) (1)
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For p =2, contracting equation (6.111) with [, gives

@ @ @
Fazﬂ = l//azlti - l//tilaz
@7 @ @
@
and ¥, can be chosen such that
(2)
2)
a
azu =
2)

(6.119)

(6.120)

From equation (6.114) for p = 2, after some manipulations we obtain

@
YH= —2l—u“+l—l“l// /A
@ mQ 1) q

(6.121)

Using equation (6.121) in equation (6.112) for p = 2 and taking into account

the normalization conditions (6.101) gives

(0)

@ 3/e\? n
"21)__§<;> (2 2(‘{/) (‘{/)a
Q

p

and, finally,

@, 1 (3)a+4l°‘Q ('21)/(;)1)
@ 3 Q2 ‘

@
For p =1, equations (6.111)—(6.114) read

o))
@ @ @ a(lf)ﬂ
i\ L F gyt 1gF gt [, Fop | 80—
(¢H) ’ T o&™
(1 ey
0F .,  0F
w_ W7 e %
+é aé(u) +¢ 24 aé(u) =0,
W
a,
(2) Fab 4 g )6(1;") ©@, (0 (2
ilg Fo2 4+ {1+ 4mpgel m u*+u*n |=0,
(1) oEW (1) (1)
ey
a , u®
) (0) @2, 0) (1)
iQn + nlyu+ né»—=0,
(1 (1) " QED

(1)
ua
(2) (0)
QT+ unew e T F=0.
(1 HOED Y

(6.122)

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)



6. Relativistic geometrical optics
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The general solution of equation (6.124) i
B i ew_@) oo (u)a(l{/f
(I;"),,y (‘/;)ﬂ Y (‘{/)ylﬂ-i_l S Fgw LW s oEw
(6.128)
@)
and ¥, can be chosen such that
49)
@
v, =0. 6.129)
W)
The normalization condition (6.101), for p =1, gives
0y (2
‘&&?:0 (6.130)

. . .., (O .
By contracting equation (6.125) with “)a we obtain

(1)

) Fel
. aﬂ w_ L (0) (2) _
ll,,(l;") +&% PR ua—47tu0e(rll) =0. (6.131)
Contracting equation (6.127) with [, gives
2 (2)
iQl, 0 £ WP, =0,
& Tm"
whence
W
@, w (D (11:) o QI
é 5 Em) Uy———1n,
(1) oE™ @ @
which, after substituting into equation (6.126), finally yields
G =o0. (6.132)
(1)

Equations (6.125)-(6.127) give

oy oy’
Qlo \@ Qz() @ 1 peom (D
<g ?Tu0£”—<w o )5?%m+£%l%m=0

from which, by taking into account equation (6.128) and contracting with
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()7
u®, it follows that

oyb
(©) ‘2> )
u ﬂ(lllz) é“;’ few (6.133)
and
oy
wip_ O _
gl o =0.

Consistently we shall construct asymptotic solutions such that
EWIE=0. (6.134)

The latter equation means that the four phases £ are constant along
the curves tangent to /* (the rays).

To the third order in ¢, from the field equations (6.87)-(6.90) we obtain,
forp=1,

(2) (2)

! Fﬂ"+lﬂF + +é°‘ aé(u) +é-ﬂ aé(u)
@
" a(lf,aﬂ (1) 1) (¢Y]
+E&W FEC Ve + Vot Vi Eop =0, (6.135)
©@3) (0 (3)
ll,,F“‘”+47tu0e< nu+u (n>+A°‘=0 (6.136a)
with
2)
(,6(11:) v, F 44 m,@ 1, @ 6.136b
=i o * Tanpoel utn+ urn ) (©136b)
B3 ew© 3 ,
lQ(Ill) +— F““‘+A°‘ 0 (6.137a)
with
@,
('1‘; W, W _© @, (),
’a= u ( u u*
urgl) —= ag(w Vﬂ(rf) u V,u*+il, ('g, (114)

L@ @) ef 1 @ (2 2 @
—il,u* u*+—| u F*+ y F*¥+u, F*|
2 (-1 @ o @

(6.137b)
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<Q‘%’ Wi, ‘3’ )+c 0 (6.138a)
with
(2) 2)

3

u
(1) 0 (0) (1) (1) () m W

C—(u“V n+nVv, u aé(a 2E + n &y FFACh
(6.138b)
The normalization conditions (6.101) give
. =0 (6.139)

(1)
because
w,@ (1) (2)

utu,=u"u,
& o= d) @

I 3) 3) . . .
By substituting u* and n from equations (6.137)—(6.138) into equation

(1) (1)
(6.136) we obtain

Qo \@ QZo @
—Q(l,, H(u),,>(ll“")“” <Q "“l +47tu0e n A"l )

— 4npge WUQC + QA" — dnpge'n A = 0. (6.140)
Equation (6.135) is written explicitly as

(2) 2)

3 a(‘{/ a7
l<zF,,y+é“" L— W ’+V,,l//., u//>

A 0EW T PEW (UB
+ cyclic permutation =0 (6.141)
and gives
() @)
o o o ( )a(‘{/)a ( )5:/1/)
matf _(‘/1’) ltf ‘/’ l _l(Vﬂ‘/’a ﬁ‘/’ﬂ)_l<ég 8{“" é: 8{“")’
(6.142)

3)
with ¥, determined up to the transformation
L

3) 3)
‘//az_) l//az + 'uaz'

(1) (1)



186 Relativistic fluids and magneto-fluids

(3)
We can choose ¥, such that
(1
3)

) (6.143)

1)

Then equation (6.140) can be written

a(2) a(‘IZI)
Ya

Q; ), (
l!)(lti + H )(Vﬁ(l/l/)a 4 ‘//[} + é(ﬂ ag(:l) é(:j aéL))

Qz Q (0) y
ua< = © )“l"Vﬁl//,‘ iH”l“ qu‘,l//,, +4npgen A lv>
(1) (1

(0) (0)
+iQA, — dnpge n A, — drpge u ,QC

2 3)
+Qz<l +Q (0) )‘3),,‘//“:0' (6.144)
Q ()

After lengthy and tedious calculations equation (6.144) simplifies consider-
ably and yields
0?2 (0) () 2
2V, +l//aVl”+—”l//”(V Wy—Vyuy)—iQ2 s
1 m
3 >y,
. [ AN — jEW £GP (1)
<(‘/1/)a(‘/1/) (‘/1/)" Q? (‘lnlya(‘lnl) (‘/1/)"> G EWOED
Q4 1-—
QP
+ terms parallel to [, and (r?a =0. (6.145)

We can write ¥, in the form
(1)

V,=Ve, (6.146)
)

with
Y=y (X EW)

. . ()
a complex function and e, a real unit vector orthogonal to [* and to u®
Furthermore, without loss of generality we can assume that e, is indepen-
dent of E® (i absorbing all the dependence on these variables). By contract-
ing equation (6.145) with ¢* gives
oty e? 802+ Q2

Q) — ————zllllllll2

WY+ UVl — iR e — 5

(6. 147)
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which is a generalized nonlinear Schrodinger equation (Asano, 1974).
We can introduce the orthonormal frame

(0)1 a a a
u*v% e® e
(1) (2)

and (elz)“, (zze)“ are two orthonormal spacelike vectors orthogonal both to [*

©)
and to u® and such that

a
e*l*V, e =0.
@ Ao
Then we can write
e"= e*cosf + e*sind,
(1) (2)

with 0 the polarization angle. It is then easy to see that one obtains the same
equation for the polarization angle as equation (6.86).

The theory developed in this section could be easily extended to cover the
case of a magnetized background plasma (Anile and Carbonaro, 1988).
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Relativistic asymptotic waves

7.0. Introduction

One of the most useful perturbation methods for dealing with nonlinear
waves is that of asymptotic and approximate waves, which is a fruitful
extension of the high-frequency method of the linear theory. In its full
generality, for arbitrary quasi-linear systems, the method has been
developed by Choquet—Bruhat in a series of articles (Choquet—Bruhat,
1969a, 1969b, 1973) where applications to relativistic fluid dynamics, to
Einstein’s equations in vacuo, and to the Einstein—-Maxwell system are
also presented. Further applications have considered the Einstein equa-
tions coupled with a scalar field (Choquet—Bruhat and Taub, 1977),
relativistic cosmology (Anile, 1977), relativistic magneto-fluid dynamics
(Anile and Greco, 1978), and supergravity theory (Choquet-Bruhat and
Greco, 1983).

A different but substantially equivalent approach is that of the averaged
Lagrangian, originally due to Whitham (1974). Extensions of the averaged
Lagrangian approach to the relativistic framework have been made, among
others, by Dougherty (1970; 1974), Dewar (1977), and Achterberg (1983)
for relativistic plasmas and by MacCallum and Taub (1973), Taub (1978),
and de Arajuro (1986) for gravitational waves in vacuo.

The method of asymptotic waves is potentially relevant for several
problems in relativistic astrophysics and plasma physics. In Chapter 5 we
studied the nonlinear evolution of a simple wave. In many situations one
deals with waves which cannot be considered as simple waves (for instance,
a pulse propagating down a density gradient). In these cases, in general,
the only way by which the nonlinear evolution can be studied is by means
of perturbation methods. The method of asymptotic waves is the most
suitable one in order to study the nonlinear evolution of nondispersive
(hyperbolic) waves. This method has also been applied in order to derive
necessary nonlinear stability conditions for problems in Newtonian fluid
dynamics and plasma physics, such as in the case of an imploding spherical
gas shell (Chin et al., 1986). A relativistic covariant formulation of the
method could be useful for tackling analogous problems in relativistic
fluid dynamics and plasma physics.
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In this chapter we shall limit ourselves to treat the method of asymptotic
and approximate waves. The plan of the chapter is the following. In Section
7.1, following Choquet—Bruhat (1969a) we introduce the concepts of
asymptotic and approximate waves. We derive the transport equation for
the wave amplitude and discuss the nonlinear distortion of the wave profile
and its breaking. In Section 7.2 we treat asymptotic waves in relativistic
fluid dynamics. We derive the transport equation and, for plane waves
propagating into a constant state, obtain explicit expressions for the non-
linear distortion of the profile and for the critical time for breaking. In
Section 7.3 we discuss asymptotic magnetoacoustic waves in relativistic
magneto-fluid dynamics. In Section 7.4 we treat asymptotic and
approximate waves for Einstein’s equations in vacuo. It is found that, in
order for approximate waves of order 1 to exist, the background metric
cannot be arbitrary, but must satisfy some requirements. These constraints
can be interpreted as implying that the background space-time is curved
by the presence of gravitational radiation (which is endowed with positive
energy density). The method of asymptotic waves thus permits us to intro-
duce the concept of a gravitational wave in a satisfactory way, describing the
propagation of a high-frequency gravitational pulse in terms of geometrical
optics concepts. This method could be of great interest when calculating
the propagation through the universe of gravitational radiation emitted
by astrophysical sources (rapidly rotating neutron